Emerging Roles of Microglia in Blood-Brain Barrier Integrity in Aging and Neurodegeneration
- Authors: Zhang S.1, Meng R.1, Jiang M.1, Qing H.1, Ni J.1
-
Affiliations:
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology
- Issue: Vol 22, No 7 (2024)
- Pages: 1189-1204
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644834
- DOI: https://doi.org/10.2174/1570159X21666230203103910
- ID: 644834
Cite item
Full Text
Abstract
The blood-brain barrier (BBB) is a highly selective interface between the blood and the brain parenchyma. It plays an essential role in maintaining a specialized environment for central nervous system function and homeostasis. The BBB disrupts with age, which contributes to the development of many age-related disorders due to central and peripheral toxic factors or BBB dysfunction. Microglia, the resident innate immune cells of the brain, have recently been explored for their ability to directly and indirectly regulate the integrity of the BBB. This review will focus on the current understanding of the molecular mechanisms utilized by microglia to regulate BBB integrity and how this becomes disrupted in aging and age-associated diseases. We will also discuss the rationale for considering microglia as a therapeutic target to prevent or slow down neurodegeneration.
About the authors
Simeng Zhang
Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology
Email: info@benthamscience.net
Rui Meng
Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology
Email: info@benthamscience.net
Muzhou Jiang
Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology
Author for correspondence.
Email: info@benthamscience.net
Hong Qing
Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology
Author for correspondence.
Email: info@benthamscience.net
Junjun Ni
Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Banks, W.A.; Reed, M.J.; Logsdon, A.F.; Rhea, E.M.; Erickson, M.A. Healthy aging and the bloodbrain barrier. Nature Aging, 2021, 1(3), 243-254. doi: 10.1038/s43587-021-00043-5 PMID: 34368785
- Senatorov, V.V., Jr; Friedman, A.R.; Milikovsky, D.Z.; Ofer, J.; Saar-Ashkenazy, R.; Charbash, A.; Jahan, N.; Chin, G.; Mihaly, E.; Lin, J.M.; Ramsay, H.J.; Moghbel, A.; Preininger, M.K.; Eddings, C.R.; Harrison, H.V.; Patel, R.; Shen, Y.; Ghanim, H.; Sheng, H.; Veksler, R.; Sudmant, P.H.; Becker, A.; Hart, B.; Rogawski, M.A.; Dillin, A.; Friedman, A.; Kaufer, D. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med., 2019, 11(521), eaaw8283. doi: 10.1126/scitranslmed.aaw8283 PMID: 31801886
- Bell, R.D.; Zlokovic, B.V. Neurovascular mechanisms and bloodbrain barrier disorder in Alzheimers disease. Acta Neuropathol., 2009, 118(1), 103-113. doi: 10.1007/s00401-009-0522-3 PMID: 19319544
- Sagare, A.P.; Bell, R.D.; Zlokovic, B.V. Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), a011452. doi: 10.1101/cshperspect.a011452 PMID: 23028132
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Bloodbrain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150. doi: 10.1038/nrneurol.2017.188 PMID: 29377008
- Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; DOrazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; Benzinger, T.L.S.; Fagan, A.M.; Ringman, J.M.; Schneider, L.S.; Morris, J.C.; Chui, H.C.; Law, M.; Toga, A.W.; Zlokovic, B.V. Bloodbrain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med., 2019, 25(2), 270-276. doi: 10.1038/s41591-018-0297-y PMID: 30643288
- Prinz, M.; Priller, J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nat. Rev. Neurosci., 2014, 15(5), 300-312. doi: 10.1038/nrn3722 PMID: 24713688
- Butler, C.A.; Popescu, A.S.; Kitchener, E.J.A.; Allendorf, D.H.; Puigdellívol, M.; Brown, G.C. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem., 2021, 158(3), 621-639. doi: 10.1111/jnc.15327 PMID: 33608912
- Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; OLoughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9. doi: 10.1016/j.immuni.2017.08.008 PMID: 28930663
- Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 2019, 25(3), 227-240. doi: 10.1177/1073858418783959 PMID: 29931997
- Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 2014, 141(3), 302-313. doi: 10.1111/imm.12163 PMID: 23981039
- Xie, Z.; Meng, J.; Wu, Z.; Nakanishi, H.; Hayashi, Y.; Kong, W.; Lan, F. Narengaowa; Yang, Q.; Qing, H.; Ni, J. The dual nature of microglia in Alzheimers disease: A microglia-neuron crosstalk perspective. Neuroscientist, 2022, 10738584211070273. doi: 10.1177/10738584211070273 PMID: 35348415
- Ehrlich, P. The bodys need for oxygen.In: A color analytical study; Hirschwald, Berlin; , 1885.
- Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the bloodbrain barrier in health and disease. Acta Neuropathol., 2018, 135(3), 311-336. doi: 10.1007/s00401-018-1815-1 PMID: 29411111
- Wosik, K.; Cayrol, R.; Dodelet-Devillers, A.; Berthelet, F.; Bernard, M.; Moumdjian, R.; Bouthillier, A.; Reudelhuber, T.L.; Prat, A. Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J. Neurosci., 2007, 27(34), 9032-9042. doi: 10.1523/JNEUROSCI.2088-07.2007 PMID: 17715340
- Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
- Gonzales, M.M.; Garbarino, V.R.; Pollet, E.; Palavicini, J.P.; Kellogg, D.L., Jr; Kraig, E.; Orr, M.E. Biological aging processes underlying cognitive decline and neurodegenerative disease. J. Clin. Invest., 2022, 132(10), e158453. doi: 10.1172/JCI158453 PMID: 35575089
- Verheggen, I.C.M.; de Jong, J.J.A.; van Boxtel, M.P.J.; Postma, A.A.; Jansen, J.F.A.; Verhey, F.R.J.; Backes, W.H. Imaging the role of bloodbrain barrier disruption in normal cognitive ageing. Geroscience, 2020, 42(6), 1751-1764. doi: 10.1007/s11357-020-00282-1 PMID: 33025410
- Rubin, L.L.; Staddon, J.M. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci., 1999, 22(1), 11-28. doi: 10.1146/annurev.neuro.22.1.11 PMID: 10202530
- Runkle, E.A.; Mu, D. Tight junction proteins: From barrier to tumorigenesis. Cancer Lett., 2013, 337(1), 41-48. doi: 10.1016/j.canlet.2013.05.038 PMID: 23743355
- Thurgur, H.; Pinteaux, E. Microglia in the neurovascular unit: Bloodbrain barriermicroglia interactions after central nervous system disorders. Neuroscience, 2019, 405, 55-67. doi: 10.1016/j.neuroscience.2018.06.046 PMID: 31007172
- Balda, M.S.; Whitney, J.A.; Flores, C.; González, S.; Cereijido, M.; Matter, K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol., 1996, 134(4), 1031-1049. doi: 10.1083/jcb.134.4.1031 PMID: 8769425
- Yamamoto, M.; Ramirez, S.H.; Sato, S.; Kiyota, T.; Cerny, R.L.; Kaibuchi, K.; Persidsky, Y.; Ikezu, T. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am. J. Pathol., 2008, 172(2), 521-533. doi: 10.2353/ajpath.2008.070076 PMID: 18187566
- Engelhardt, B.; Liebner, S. Novel insights into the development and maintenance of the bloodbrain barrier. Cell Tissue Res., 2014, 355(3), 687-699. doi: 10.1007/s00441-014-1811-2 PMID: 24590145
- Rossa, J.; Ploeger, C.; Vorreiter, F.; Saleh, T.; Protze, J.; Günzel, D.; Wolburg, H.; Krause, G.; Piontek, J. Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments. J. Biol. Chem., 2014, 289(11), 7641-7653. doi: 10.1074/jbc.M113.531012 PMID: 24478310
- Harris, T.J.C.; Tepass, U. Adherens junctions: From molecules to morphogenesis. Nat. Rev. Mol. Cell Biol., 2010, 11(7), 502-514. doi: 10.1038/nrm2927 PMID: 20571587
- Zhao, F.; Zhong, L.; Luo, Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci. Ther., 2021, 27(1), 26-35. doi: 10.1111/cns.13560 PMID: 33377610
- Henry, C.B.S.; Duling, B.R. TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol., 2000, 279(6), H2815-H2823. doi: 10.1152/ajpheart.2000.279.6.H2815 PMID: 11087236
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
- Steliga, A. Kowiański, P.; Czuba, E.; Waśkow, M.; Moryś J.; Lietzau, G. Neurovascular unit as a source of ischemic stroke biomarkerslimitations of experimental studies and perspectives for clinical application. Transl. Stroke Res., 2020, 11(4), 553-579. doi: 10.1007/s12975-019-00744-5 PMID: 31701356
- Winkler, A.; Wrzos, C.; Haberl, M.; Weil, M.T.; Gao, M.; Möbius, W.; Odoardi, F.; Thal, D.R.; Chang, M.; Opdenakker, G.; Bennett, J.L.; Nessler, S.; Stadelmann, C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J. Clin. Invest., 2021, 131(5), e141694. doi: 10.1172/JCI141694 PMID: 33645550
- Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol., 2015, 37(6), 625-638. doi: 10.1007/s00281-015-0515-3 PMID: 26223505
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
- Pan, J.; Ma, N.; Zhong, J.; Yu, B.; Wan, J.; Zhang, W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. Mol. Ther. Nucleic Acids, 2021, 26, 970-986. doi: 10.1016/j.omtn.2021.08.030 PMID: 34760339
- Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci., 2016, 19(6), 771-783. doi: 10.1038/nn.4288 PMID: 27227366
- Bhowmick, S.; DMello, V.; Caruso, D.; Wallerstein, A.; Abdul-Muneer, P.M. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp. Neurol., 2019, 317, 260-270. doi: 10.1016/j.expneurol.2019.03.014 PMID: 30926390
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412. doi: 10.1101/cshperspect.a020412 PMID: 25561720
- Stratman, A.N.; Malotte, K.M.; Mahan, R.D.; Davis, M.J.; Davis, G.E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood, 2009, 114(24), 5091-5101. doi: 10.1182/blood-2009-05-222364 PMID: 19822899
- Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405. doi: 10.1038/nn.2946 PMID: 22030551
- Harris, A.L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol., 2007, 94(1-2), 120-143. doi: 10.1016/j.pbiomolbio.2007.03.011 PMID: 17470375
- Yeh, H.; Ikezu, T. Transcriptional and epigenetic regulation of microglia in health and disease. Trends Mol. Med., 2019, 25(2), 96-111. doi: 10.1016/j.molmed.2018.11.004 PMID: 30578089
- Nayak, D.; Roth, T.L.; McGavern, D.B. Microglia development and function. Annu. Rev. Immunol., 2014, 32(1), 367-402. doi: 10.1146/annurev-immunol-032713-120240 PMID: 24471431
- Ginhoux, F.; Prinz, M. Origin of microglia: Current concepts and past controversies. Cold Spring Harb. Perspect. Biol., 2015, 7(8), a020537. doi: 10.1101/cshperspect.a020537 PMID: 26134003
- Dai, X.M.; Ryan, G.R.; Hapel, A.J.; Dominguez, M.G.; Russell, R.G.; Kapp, S.; Sylvestre, V.; Stanley, E.R. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood, 2002, 99(1), 111-120. doi: 10.1182/blood.V99.1.111 PMID: 11756160
- Sosna, J.; Philipp, S.; Albay, R., III; Reyes-Ruiz, J.M.; Baglietto-Vargas, D.; LaFerla, F.M.; Glabe, C.G. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimers disease. Mol. Neurodegener., 2018, 13(1), 11. doi: 10.1186/s13024-018-0244-x PMID: 29490706
- Satoh, J.; Kino, Y.; Asahina, N.; Takitani, M.; Miyoshi, J.; Ishida, T.; Saito, Y. TMEM119 marks a subset of microglia in the human brain. Neuropathology, 2016, 36(1), 39-49. doi: 10.1111/neup.12235 PMID: 26250788
- Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69. doi: 10.1038/nrn2038 PMID: 17180163
- Gao, H.M.; Liu, B.; Zhang, W.; Hong, J.S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinsons disease. FASEB J., 2003, 17(13), 1-22. doi: 10.1096/fj.03-0109fje PMID: 12897068
- West, P.K.; McCorkindale, A.N.; Guennewig, B.; Ashhurst, T.M.; Viengkhou, B.; Hayashida, E.; Jung, S.R.; Butovsky, O.; Campbell, I.L.; Hofer, M.J. The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. J. Neuroinflammation, 2022, 19(1), 96. doi: 10.1186/s12974-022-02441-x PMID: 35429976
- Ye, L.; Huang, Y.; Zhao, L.; Li, Y.; Sun, L.; Zhou, Y.; Qian, G.; Zheng, J.C. IL-1β and TNF-α induce neurotoxicity through glutamate production: A potential role for neuronal glutaminase. J. Neurochem., 2013, 125(6), 897-908. doi: 10.1111/jnc.12263 PMID: 23578284
- Bernardino, L.; Xapelli, S.; Silva, A.P.; Jakobsen, B.; Poulsen, F.R.; Oliveira, C.R.; Vezzani, A.; Malva, J.O.; Zimmer, J. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J. Neurosci., 2005, 25(29), 6734-6744. doi: 10.1523/JNEUROSCI.1510-05.2005 PMID: 16033883
- Masuch, A.; Shieh, C.H.; van Rooijen, N.; van Calker, D.; Biber, K. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα and valproic acid. Glia, 2016, 64(1), 76-89. doi: 10.1002/glia.22904 PMID: 26295445
- Norden, D.M.; Fenn, A.M.; Dugan, A.; Godbout, J.P. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia, 2014, 62(6), 881-895. doi: 10.1002/glia.22647 PMID: 24616125
- He, Y.; Gao, Y.; Zhang, Q.; Zhou, G.; Cao, F.; Yao, S. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience, 2020, 437, 161-171. doi: 10.1016/j.neuroscience.2020.03.008 PMID: 32224230
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604. doi: 10.1016/j.immuni.2010.05.007 PMID: 20510870
- Kobayashi, K.; Imagama, S.; Ohgomori, T.; Hirano, K.; Uchimura, K.; Sakamoto, K.; Hirakawa, A.; Takeuchi, H.; Suzumura, A.; Ishiguro, N.; Kadomatsu, K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis., 2013, 4(3), e525. doi: 10.1038/cddis.2013.54 PMID: 23470532
- Sato, T.; Morita, I.; Sakaguchi, K.; Nakahama, K.I.; Smith, W.L.; Dewitt, D.L.; Murota, S.I. Involvement of prostaglandin endoperoxide H synthase-2 in osteoclast-like cell formation induced by interleukin-1β. J. Bone Miner. Res., 1996, 11(3), 392-400. doi: 10.1002/jbmr.5650110313 PMID: 8852950
- Zhang, Y.; Feng, S.; Nie, K.; Li, Y.; Gao, Y.; Gan, R.; Wang, L.; Li, B.; Sun, X.; Wang, L.; Zhang, Y. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinsons disease. Biochem. Biophys. Res. Commun., 2018, 499(4), 797-802. doi: 10.1016/j.bbrc.2018.03.226 PMID: 29621548
- Edwards, D.N.; Bix, G.J. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am. J. Physiol. Cell Physiol., 2019, 316(2), C252-C263. doi: 10.1152/ajpcell.00151.2018 PMID: 30462535
- Di Girolamo, N.; Indoh, I.; Jackson, N.; Wakefield, D.; McNeil, H.P.; Yan, W.; Geczy, C.; Arm, J.P.; Tedla, N. Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines: Role in cell migration. J. Immunol., 2006, 177(4), 2638-2650. doi: 10.4049/jimmunol.177.4.2638 PMID: 16888026
- Li, S.Y.; Zhou, Y.L.; He, D.H.; Liu, W.; Fan, X.Z.; Wang, Q.; Pan, H.F.; Cheng, Y.X.; Liu, Y.Q. Centipeda minima extract exerts antineuroinflammatory effects via the inhibition of NF-κB signaling pathway. Phytomedicine, 2020, 67, 153164. doi: 10.1016/j.phymed.2019.153164 PMID: 31954258
- Haruwaka, K.; Ikegami, A.; Tachibana, Y.; Ohno, N.; Konishi, H.; Hashimoto, A.; Matsumoto, M.; Kato, D.; Ono, R.; Kiyama, H.; Moorhouse, A.J.; Nabekura, J.; Wake, H. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun., 2019, 10(1), 5816. doi: 10.1038/s41467-019-13812-z PMID: 31862977
- Sarlus, H.; Heneka, M.T. Microglia in Alzheimers disease. J. Clin. Invest., 2017, 127(9), 3240-3249. doi: 10.1172/JCI90606 PMID: 28862638
- Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; Miller, J.H.; Johnson, R.E.; OBanion, M.K. Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Invest., 2007, 117(6), 1595-1604. doi: 10.1172/JCI31450 PMID: 17549256
- Xiang, X.; Werner, G.; Bohrmann, B.; Liesz, A.; Mazaheri, F.; Capell, A.; Feederle, R.; Knuesel, I.; Kleinberger, G.; Haass, C. TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med., 2016, 8(9), 992-1004. doi: 10.15252/emmm.201606370 PMID: 27402340
- Martin, E.; Boucher, C.; Fontaine, B.; Delarasse, C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimers disease models: effects of aging and amyloid pathology. Aging Cell, 2017, 16(1), 27-38. doi: 10.1111/acel.12522 PMID: 27723233
- Jolivel, V.; Bicker, F.; Binamé, F.; Ploen, R.; Keller, S.; Gollan, R.; Jurek, B.; Birkenstock, J.; Poisa-Beiro, L.; Bruttger, J.; Opitz, V.; Thal, S.C.; Waisman, A.; Bäuerle, T.; Schäfer, M.K.; Zipp, F.; Schmidt, M.H.H. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol., 2015, 129(2), 279-295. doi: 10.1007/s00401-014-1372-1 PMID: 25500713
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716. doi: 10.1126/science.aad8373 PMID: 27033548
- Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship between amyloid-β deposition and bloodbrain barrier dysfunction in Alzheimers Disease. Front. Cell. Neurosci., 2021, 15, 695479. doi: 10.3389/fncel.2021.695479 PMID: 34349624
- Venegas, C.; Kumar, S.; Franklin, B.S.; Dierkes, T.; Brinkschulte, R.; Tejera, D.; Vieira-Saecker, A.; Schwartz, S.; Santarelli, F.; Kummer, M.P.; Griep, A.; Gelpi, E.; Beilharz, M.; Riedel, D.; Golenbock, D.T.; Geyer, M.; Walter, J.; Latz, E.; Heneka, M.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimers disease. Nature, 2017, 552(7685), 355-361. doi: 10.1038/nature25158 PMID: 29293211
- Chen, A.Q.; Fang, Z.; Chen, X.L.; Yang, S.; Zhou, Y.F.; Mao, L.; Xia, Y.P.; Jin, H.J.; Li, Y.N.; You, M.F.; Wang, X.X.; Lei, H.; He, Q.W.; Hu, B. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brainbarrier disruption after ischemic stroke. Cell Death Dis., 2019, 10(7), 487. doi: 10.1038/s41419-019-1716-9 PMID: 31221990
- Wong, D.; Dorovini-Zis, K.; Vincent, S.R. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human bloodbrain barrier. Exp. Neurol., 2004, 190(2), 446-455. doi: 10.1016/j.expneurol.2004.08.008 PMID: 15530883
- Ruan, Z.; Zhang, D.; Huang, R.; Sun, W.; Hou, L.; Zhao, J.; Wang, Q. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinsons Disease mouse model. Int. J. Mol. Sci., 2022, 23(5), 2793. doi: 10.3390/ijms23052793 PMID: 35269933
- Haeren, R.H.L.; Rijkers, K.; Schijns, O.E.M.G.; Dings, J.; Hoogland, G.; van Zandvoort, M.A.M.J.; Vink, H.; van Overbeeke, J.J. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report. J. Neurosci. Methods, 2018, 303, 114-125. doi: 10.1016/j.jneumeth.2018.03.009 PMID: 29578039
- Mulivor, A.W.; Lipowsky, H.H. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(5), H1672-H1680. doi: 10.1152/ajpheart.00832.2003 PMID: 14704229
- Cancel, L.M.; Ebong, E.E.; Mensah, S.; Hirschberg, C.; Tarbell, J.M. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis, 2016, 252, 136-146. doi: 10.1016/j.atherosclerosis.2016.07.930 PMID: 27529818
- Reinhold, A.K.; Rittner, H.L. Barrier function in the peripheral and central nervous systema review. Pflugers Arch., 2017, 469(1), 123-134. doi: 10.1007/s00424-016-1920-8 PMID: 27957611
- Zhang, J.; He, H.; Qiao, Y.; Zhou, T.; He, H.; Yi, S.; Zhang, L.; Mo, L.; Li, Y.; Jiang, W.; You, Z. Priming of microglia with IFN -γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia, 2020, 68(12), 2674-2692. doi: 10.1002/glia.23878 PMID: 32652855
- Kawanokuchi, J.; Mizuno, T.; Takeuchi, H.; Kato, H.; Wang, J.; Mitsuma, N.; Suzumura, A. Production of interferon-γ by microglia. Mult. Scler., 2006, 12(5), 558-564. doi: 10.1177/1352458506070763 PMID: 17086900
- Harcourt, B.H.; Sanchez, A.; Offermann, M.K. Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells. J. Virol., 1999, 73(4), 3491-3496. doi: 10.1128/JVI.73.4.3491-3496.1999 PMID: 10074208
- Dietrich, J.B. The adhesion molecule ICAM-1 and its regulation in relation with the bloodbrain barrier. J. Neuroimmunol., 2002, 128(1-2), 58-68. doi: 10.1016/S0165-5728(02)00114-5 PMID: 12098511
- Miklossy, J.; Doudet, D.D.; Schwab, C.; Yu, S.; McGeer, E.G.; McGeer, P.L. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp. Neurol., 2006, 197(2), 275-283. doi: 10.1016/j.expneurol.2005.10.034 PMID: 16336966
- Werner, A.; Kloss, C.U.A.; Walter, J.; Kreutzberg, G.W.; Raivich, G. Intercellular adhesion molecule-1 (ICAM-1) in the mouse facial motor nucleus after axonal injury and during regeneration. J. Neurocytol., 1998, 27(4), 219-232. doi: 10.1023/A:1006928830251 PMID: 10640181
- Kim, J.H.; Na, H.J.; Kim, C.K.; Kim, J.Y.; Ha, K.S.; Lee, H.; Chung, H.T.; Kwon, H.J.; Kwon, Y.G.; Kim, Y.M. The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: Role of H2O2 in NF-κB activation. Free Radic. Biol. Med., 2008, 45(6), 885-896. doi: 10.1016/j.freeradbiomed.2008.06.019 PMID: 18620044
- Schreibelt, G.; Kooij, G.; Reijerkerk, A.; Doorn, R.; Gringhuis, S.I.; Pol, S.; Weksler, B.B.; Romero, I.A.; Couraud, P.O.; Piontek, J.; Blasig, I.E.; Dijkstra, C.D.; Ronken, E.; Vries, H.E. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J., 2007, 21(13), 3666-3676. doi: 10.1096/fj.07-8329com PMID: 17586731
- Schreibelt, G.; Musters, R.J.P.; Reijerkerk, A.; de Groot, L.R.; van der Pol, S.M.A.; Hendrikx, E.M.L.; Döpp, E.D.; Dijkstra, C.D.; Drukarch, B.; de Vries, H.E. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J. Immunol., 2006, 177(4), 2630-2637. doi: 10.4049/jimmunol.177.4.2630 PMID: 16888025
- Kahles, T.; Luedike, P.; Endres, M.; Galla, H.J.; Steinmetz, H.; Busse, R.; Neumann-Haefelin, T.; Brandes, R.P. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 2007, 38(11), 3000-3006. doi: 10.1161/STROKEAHA.107.489765 PMID: 17916764
- Galasso, J.M.; Miller, M.J.; Cowell, R.M.; Harrison, J.K.; Warren, J.S.; Silverstein, F.S. Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp. Neurol., 2000, 165(2), 295-305. doi: 10.1006/exnr.2000.7466 PMID: 10993690
- Wang, X.; Yue, T.L.; Barone, F.C.; Feuerstein, G.Z. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke, 1995, 26(4), 661-666. doi: 10.1161/01.STR.26.4.661 PMID: 7709415
- Ishizuka, K.; Kimura, T.; Igata-Yi, R.; Katsuragi, S.; Takamatsu, J.; Miyakawa, T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimers disease. Psychiatry Clin. Neurosci., 1997, 51(3), 135-138. doi: 10.1111/j.1440-1819.1997.tb02375.x PMID: 9225377
- Jiang, Y.; Beller, D.I.; Frendl, G.; Graves, D.T. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J. Immunol., 1992, 148(8), 2423-2428. doi: 10.4049/jimmunol.148.8.2423 PMID: 1348518
- Stamatovic, S.M.; Shakui, P.; Keep, R.F.; Moore, B.B.; Kunkel, S.L.; Van Rooijen, N.; Andjelkovic, A.V. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J. Cereb. Blood Flow Metab., 2005, 25(5), 593-606. doi: 10.1038/sj.jcbfm.9600055 PMID: 15689955
- Dimitrijevic, O.B.; Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J. Cereb. Blood Flow Metab., 2006, 26(6), 797-810. doi: 10.1038/sj.jcbfm.9600229 PMID: 16192992
- Buffo, A.; Rolando, C.; Ceruti, S. Astrocytes in the damaged brain: Molecular and cellular insights into their reactive response and healing potential. Biochem. Pharmacol., 2010, 79(2), 77-89. doi: 10.1016/j.bcp.2009.09.014 PMID: 19765548
- Lambertsen, K.L.; Meldgaard, M.; Ladeby, R.; Finsen, B. A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 2005, 25(1), 119-135. doi: 10.1038/sj.jcbfm.9600014 PMID: 15678118
- Holm, T.H.; Draeby, D.; Owens, T. Microglia are required for astroglial toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia, 2012, 60(4), 630-638. doi: 10.1002/glia.22296 PMID: 22271465
- Kirkley, K.S.; Popichak, K.A.; Afzali, M.F.; Legare, M.E.; Tjalkens, R.B. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J. Neuroinflammation, 2017, 14(1), 99. doi: 10.1186/s12974-017-0871-0 PMID: 28476157
- Ni, J.; Zhao, J.; Zhang, X.; Reinheckel, T.; Turk, V.; Nakanishi, H. Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-β signaling. J. Neuroinflammation, 2021, 18(1), 176. doi: 10.1186/s12974-021-02227-7 PMID: 34376208
- VanRyzin, J.W.; Marquardt, A.E.; Argue, K.J.; Vecchiarelli, H.A.; Ashton, S.E.; Arambula, S.E.; Hill, M.N.; McCarthy, M.M. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron, 2019, 102(2), 435-449.e6. doi: 10.1016/j.neuron.2019.02.006 PMID: 30827729
- Michinaga, S.; Koyama, Y. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int. J. Mol. Sci., 2019, 20(3), 571. doi: 10.3390/ijms20030571 PMID: 30699952
- Jo, M.; Kim, J.H.; Song, G.J.; Seo, M.; Hwang, E.M.; Suk, K. Astrocytic Orosomucoid-2 modulates microglial activation and neuroinflammation. J. Neurosci., 2017, 37(11), 2878-2894. doi: 10.1523/JNEUROSCI.2534-16.2017 PMID: 28193696
- Jang, E.; Lee, S.; Kim, J.H.; Kim, J.H.; Seo, J.W.; Lee, W.H.; Mori, K.; Nakao, K.; Suk, K. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J., 2013, 27(3), 1176-1190. doi: 10.1096/fj.12-222257 PMID: 23207546
- Bi, F.; Huang, C.; Tong, J.; Qiu, G.; Huang, B.; Wu, Q.; Li, F.; Xu, Z.; Bowser, R.; Xia, X.G.; Zhou, H. Reactive astrocytes secrete lcn2 to promote neuron death. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 4069-4074. doi: 10.1073/pnas.1218497110 PMID: 23431168
- Rocha, S.M.; Cristovão, A.C.; Campos, F.L.; Fonseca, C.P.; Baltazar, G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol. Dis., 2012, 47(3), 407-415. doi: 10.1016/j.nbd.2012.04.014 PMID: 22579772
- Tseng, K.Y.; Wu, J.S.; Chen, Y.H.; Airavaara, M.; Cheng, C.Y.; Ma, K.H. Modulating microglia/macrophage activation by CDNF promotes transplantation of fetal ventral mesencephalic graft survival and function in a hemiparkinsonian rat model. Biomedicines, 2022, 10(6), 1446. doi: 10.3390/biomedicines10061446 PMID: 35740467
- Ding, H.; Chen, J.; Su, M.; Lin, Z.; Zhan, H.; Yang, F.; Li, W.; Xie, J.; Huang, Y.; Liu, X.; Liu, B.; Zhou, X. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J. Neuroinflammation, 2020, 17(1), 19. doi: 10.1186/s12974-020-1704-0 PMID: 31931832
- Tanuma, N.; Sakuma, H.; Sasaki, A.; Matsumoto, Y. Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol., 2006, 112(2), 195-204. doi: 10.1007/s00401-006-0083-7 PMID: 16733654
- Docagne, F.; Nicole, O.; Gabriel, C.; Fernández-Monreal, M.; Lesné, S.; Ali, C.; Plawinski, L.; Carmeliet, P.; MacKenzie, E.T.; Buisson, A.; Vivien, D. Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-beta 1 against NMDA-induced necrosis. Mol. Cell. Neurosci., 2002, 21(4), 634-644. doi: 10.1006/mcne.2002.1206 PMID: 12504596
- Yang, L.; Niu, F.; Yao, H.; Liao, K.; Chen, X.; Kook, Y.; Ma, R.; Hu, G.; Buch, S. Exosomal miR-9 released from HIV Tat stimulated astrocytes mediates microglial migration. J. Neuroimmune Pharmacol., 2018, 13(3), 330-344. doi: 10.1007/s11481-018-9779-4 PMID: 29497921
- Litvinchuk, A.; Wan, Y.W.; Swartzlander, D.B.; Chen, F.; Cole, A.; Propson, N.E.; Wang, Q.; Zhang, B.; Liu, Z.; Zheng, H. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimers Disease. Neuron, 2018, 100(6), 1337-1353.e5. doi: 10.1016/j.neuron.2018.10.031 PMID: 30415998
- Matsumoto, J.; Takata, F.; Machida, T.; Takahashi, H.; Soejima, Y.; Funakoshi, M.; Futagami, K.; Yamauchi, A.; Dohgu, S.; Kataoka, Y. Tumor necrosis factor-α-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci. Lett., 2014, 578, 133-138. doi: 10.1016/j.neulet.2014.06.052 PMID: 24993300
- Dohgu, S.; Takata, F.; Matsumoto, J.; Kimura, I.; Yamauchi, A.; Kataoka, Y. Monomeric α-synuclein induces bloodbrain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc. Res., 2019, 124, 61-66. doi: 10.1016/j.mvr.2019.03.005 PMID: 30885616
- Matsumoto, J.; Dohgu, S.; Takata, F.; Machida, T. Bölükbaşi Hatip, F.F.; Hatip-Al-Khatib, I.; Yamauchi, A.; Kataoka, Y. TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between IκB-NFκB and JAK-STAT3 pathways. Brain Res., 2018, 1692, 34-44. doi: 10.1016/j.brainres.2018.04.023 PMID: 29702085
- Rustenhoven, J.; Aalderink, M.; Scotter, E.L.; Oldfield, R.L.; Bergin, P.S.; Mee, E.W.; Graham, E.S.; Faull, R.L.M.; Curtis, M.A.; Park, T.I.H.; Dragunow, M. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J. Neuroinflammation, 2016, 13(1), 37. doi: 10.1186/s12974-016-0503-0 PMID: 26867675
- Perez, F.; Ruera, C.N.; Miculan, E.; Carasi, P.; Dubois-Camacho, K.; Garbi, L.; Guzman, L.; Hermoso, M.A.; Chirdo, F.G. IL-33 alarmin and its active proinflammatory fragments are released in small intestine in celiac disease. Front. Immunol., 2020, 11, 581445. doi: 10.3389/fimmu.2020.581445 PMID: 33133101
- Fu, A.K.Y.; Hung, K.W.; Yuen, M.Y.F.; Zhou, X.; Mak, D.S.Y.; Chan, I.C.W.; Cheung, T.H.; Zhang, B.; Fu, W.Y.; Liew, F.Y.; Ip, N.Y. IL-33 ameliorates Alzheimers disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA, 2016, 113(19), E2705-E2713. doi: 10.1073/pnas.1604032113 PMID: 27091974
- Febinger, H.Y.; Thomasy, H.E.; Pavlova, M.N.; Ringgold, K.M.; Barf, P.R.; George, A.M.; Grillo, J.N.; Bachstetter, A.D.; Garcia, J.A.; Cardona, A.E.; Opp, M.R.; Gemma, C. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J. Neuroinflammation, 2015, 12(1), 154. doi: 10.1186/s12974-015-0386-5 PMID: 26329692
- Lee, C.Y.D.; Landreth, G.E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna), 2010, 117(8), 949-960. doi: 10.1007/s00702-010-0433-4 PMID: 20552234
- Prinz, M.; Priller, J. Tickets to the brain: Role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J. Neuroimmunol., 2010, 224(1-2), 80-84. doi: 10.1016/j.jneuroim.2010.05.015 PMID: 20554025
- Lauro, C.; Catalano, M.; Trettel, F.; Limatola, C. Fractalkine in the nervous system: Neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci., 2015, 1351(1), 141-148. doi: 10.1111/nyas.12805 PMID: 26084002
- Tai, Y.F.; Pavese, N.; Gerhard, A.; Tabrizi, S.J.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation in presymptomatic Huntingtons disease gene carriers. Brain, 2007, 130(7), 1759-1766. doi: 10.1093/brain/awm044 PMID: 17400599
- Miller, J.P.; Holcomb, J.; Al-Ramahi, I.; de Haro, M.; Gafni, J.; Zhang, N.; Kim, E.; Sanhueza, M.; Torcassi, C.; Kwak, S.; Botas, J.; Hughes, R.E.; Ellerby, L.M. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntingtons disease. Neuron, 2010, 67(2), 199-212. doi: 10.1016/j.neuron.2010.06.021 PMID: 20670829
- Kim, Y.S.; Kim, S.S.; Cho, J.J.; Choi, D.H.; Hwang, O.; Shin, D.H.; Chun, H.S.; Beal, M.F.; Joh, T.H. Matrix metalloproteinase-3: A novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci., 2005, 25(14), 3701-3711. doi: 10.1523/JNEUROSCI.4346-04.2005 PMID: 15814801
- Ryu, J.K.; Cho, T.; Choi, H.B.; Wang, Y.T.; McLarnon, J.G. Microglial VEGF receptor response is an integral chemotactic component in Alzheimers disease pathology. J. Neurosci., 2009, 29(1), 3-13. doi: 10.1523/JNEUROSCI.2888-08.2009 PMID: 19129379
- Issa, R.; Krupinski, J.; Bujny, T.; Kumar, S.; Kaluza, J.; Kumar, P. Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab. Invest., 1999, 79(4), 417-425. PMID: 10211994
- Schoknecht, K.; Shalev, H. Blood-brain barrier dysfunction in brain diseases: Clinical experience. Epilepsia, 2012, 53(Suppl. 6), 7-13. doi: 10.1111/j.1528-1167.2012.03697.x PMID: 23134490
- Xu, Z.; Han, K.; Chen, J.; Wang, C.; Dong, Y.; Yu, M.; Bai, R.; Huang, C.; Hou, L. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J. Neurochem., 2017, 142(5), 700-709. doi: 10.1111/jnc.14108 PMID: 28632969
- Xu, L.; He, D.; Bai, Y. Microglia-mediated inflammation and neurodegenerative disease. Mol. Neurobiol., 2016, 53(10), 6709-6715. doi: 10.1007/s12035-015-9593-4 PMID: 26659872
Supplementary files
