Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability?
- Authors: Bellanca C.1, Augello E.2, Mariottini A.3, Bonaventura G.4, La Cognata V.5, Di Benedetto G.2, Cantone A.2, Attaguile G.2, Di Mauro R.2, Cantarella G.2, Massacesi L.3, Bernardini R.2
-
Affiliations:
- epartment of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
- Department of Neurosciences Drugs and Child Health, University of Florence
- Institute for Biomedical Research and Innovation (IRIB, Italian National Research Council
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council
- Issue: Vol 22, No 8 (2024)
- Pages: 1286-1326
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644858
- DOI: https://doi.org/10.2174/1570159X22666240124114126
- ID: 644858
Cite item
Full Text
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
About the authors
Carlo Bellanca
epartment of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catani
Email: info@benthamscience.net
Egle Augello
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Email: info@benthamscience.net
Alice Mariottini
Department of Neurosciences Drugs and Child Health, University of Florence
Email: info@benthamscience.net
Gabriele Bonaventura
Institute for Biomedical Research and Innovation (IRIB, Italian National Research Council
Email: info@benthamscience.net
Valentina La Cognata
Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council
Email: info@benthamscience.net
Giulia Di Benedetto
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Email: info@benthamscience.net
Anna Cantone
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Email: info@benthamscience.net
Giuseppe Attaguile
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Email: info@benthamscience.net
Rosaria Di Mauro
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Email: info@benthamscience.net
Giuseppina Cantarella
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Author for correspondence.
Email: info@benthamscience.net
Luca Massacesi
Department of Neurosciences Drugs and Child Health, University of Florence
Email: info@benthamscience.net
Renato Bernardini
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania
Email: info@benthamscience.net
References
- Didonna, A.; Oksenberg, J.R. The Genetics of Multiple Sclerosis.Codon Publications: Brisbane, 2017. doi: 10.15586/codon.multiplesclerosis.2017.ch1
- Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.A.; Tzoulaki, I. Environmental risk factors and multiple sclerosis : An umbrella review of systematic reviews and meta-analyses. Lancet Neurol., 2015, 14(3), 263-273. doi: 10.1016/S1474-4422(14)70267-4 PMID: 25662901
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med., 2018, 378(2), 169-180. doi: 10.1056/NEJMra1401483 PMID: 29320652
- Multiple Sclerosis: Facts, Statistics, and You. Available at: https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic
- Adelman, G.; Rane, S.G.; Villa, K.F. The cost burden of multiple sclerosis in the United States : A systematic review of the literature. J. Med. Econ., 2013, 16(5), 639-647. doi: 10.3111/13696998.2013.778268 PMID: 23425293
- Amato, M.P.; Derfuss, T.; Hemmer, B.; Liblau, R.; Montalban, X.; Soelberg, S.P.; Miller, D.H. 2016 ECTRIMS focused workshop group environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult. Scler., 2018, 24(5), 590-603. doi: 10.1177/1352458516686847 PMID: 28671487
- Thormann, A.; Sørensen, P.S.; Koch-Henriksen, N.; Laursen, B.; Magyari, M. Comorbidity in multiple sclerosis is associated with diagnostic delays and increased mortality. Neurology, 2017, 89(16), 1668-1675. doi: 10.1212/WNL.0000000000004508 PMID: 28931645
- Patsopoulos, N.A. Genetics of multiple sclerosis : An overview and new directions. Cold Spring Harb. Perspect. Med., 2018, 8(7), a028951. doi: 10.1101/cshperspect.a028951 PMID: 29440325
- Moghbeli, M. Genetic and molecular biology of multiple sclerosis among iranian patients : An overview. Cell. Mol. Neurobiol., 2020, 40(1), 65-85. doi: 10.1007/s10571-019-00731-2 PMID: 31482432
- Ascherio, A. Environmental factors in multiple sclerosis. Expert Rev. Neurother., 2013, 13(sup2), 3-9. doi: 10.1586/14737175.2013.865866 PMID: 24289836
- Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and multiple sclerosis: A comprehensive review. Neurol. Ther., 2018, 7(1), 59-85. doi: 10.1007/s40120-017-0086-4 PMID: 29243029
- Kim, W.; Patsopoulos, N.A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol., 2022, 44(1), 63-79. doi: 10.1007/s00281-021-00907-3 PMID: 35022889
- Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol., 2015, 14(2), 183-193. doi: 10.1016/S1474-4422(14)70256-X PMID: 25772897
- Stadelmann, C. Multiple sclerosis as a neurodegenerative disease: Pathology, mechanisms and therapeutic implications. Curr. Opin. Neurol., 2011, 24(3), 224-229. doi: 10.1097/WCO.0b013e328346056f PMID: 21455066
- Hohlfeld, R.; Londei, M.; Massacesi, L.; Salvetti, M. T-cell autoimmunity in multiple sclerosis. Immunol. Today, 1995, 16(6), 259-261. doi: 10.1016/0167-5699(95)80176-6 PMID: 7544976
- Gaitán, M.I.; Shea, C.D.; Evangelou, I.E.; Stone, R.D.; Fenton, K.M.; Bielekova, B.; Massacesi, L.; Reich, D.S. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann. Neurol., 2011, 70(1), 22-29. doi: 10.1002/ana.22472 PMID: 21710622
- Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol., 2019, 9, 3116. doi: 10.3389/fimmu.2018.03116 PMID: 30687321
- Wiendl, H.; Hohlfeld, R. Multiple sclerosis therapeutics: Unexpected outcomes clouding undisputed successes. Neurology, 2009, 72(11), 1008-1015. doi: 10.1212/01.wnl.0000344417.42972.54 PMID: 19289741
- Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol., 2014, 10(4), 225-238. doi: 10.1038/nrneurol.2014.37 PMID: 24638138
- Fazeli, A.S.; Nasrabadi, D.; Sanati, M.H.; Pouya, A.; Ibrahim, S.M.; Baharvand, H.; Salekdeh, G.H. Proteome analysis of brain in murine experimental autoimmune encephalomyelitis. Proteomics, 2010, 10(15), 2822-2832. doi: 10.1002/pmic.200900507 PMID: 20540118
- Rajani, R.M.; Quick, S.; Ruigrok, S.R.; Graham, D.; Harris, S.E.; Verhaaren, B.F.J.; Fornage, M.; Seshadri, S.; Atanur, S.S.; Dominiczak, A.F.; Smith, C.; Wardlaw, J.M.; Williams, A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med., 2018, 10(448), eaam9507. doi: 10.1126/scitranslmed.aam9507 PMID: 29973407
- Saab, A.S.; Nave, K.A. Myelin dynamics: Protecting and shaping neuronal functions. Curr. Opin. Neurobiol., 2017, 47, 104-112. doi: 10.1016/j.conb.2017.09.013 PMID: 29065345
- Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic supporters of neurons. J. Clin. Invest., 2017, 127(9), 3271-3280. doi: 10.1172/JCI90610 PMID: 28862639
- Dombrowski, Y.; OHagan, T.; Dittmer, M.; Penalva, R.; Mayoral, S.R.; Bankhead, P.; Fleville, S.; Eleftheriadis, G.; Zhao, C.; Naughton, M.; Hassan, R.; Moffat, J.; Falconer, J.; Boyd, A.; Hamilton, P.; Allen, I.V.; Kissenpfennig, A.; Moynagh, P.N.; Evergren, E.; Perbal, B.; Williams, A.C.; Ingram, R.J.; Chan, J.R.; Franklin, R.J.M.; Fitzgerald, D.C. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci., 2017, 20(5), 674-680. doi: 10.1038/nn.4528 PMID: 28288125
- Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; Diaz, F.; Meijer, D.; Suter, U.; Hamprecht, B.; Sereda, M.W.; Moraes, C.T.; Frahm, J.; Goebbels, S.; Nave, K.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 2012, 485(7399), 517-521. doi: 10.1038/nature11007 PMID: 22622581
- Craner, M.J.; Newcombe, J.; Black, J.A.; Hartle, C.; Cuzner, M.L.; Waxman, S.G. Molecular changes in neurons in multiple sclerosis: Altered axonal expression of Nav 1.2 and Nav 1.6 sodium channels and Na+ /Ca2+ exchanger. Proc. Natl. Acad. Sci., 2004, 101(21), 8168-8173. doi: 10.1073/pnas.0402765101 PMID: 15148385
- Waxman, S.G.; Craner, M.J.; Black, J.A. Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol. Sci., 2004, 25(11), 584-591. doi: 10.1016/j.tips.2004.09.001 PMID: 15491781
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology, 1996, 46(4), 907-911. doi: 10.1212/WNL.46.4.907 PMID: 8780061
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; Bebo, B., Jr; Calabresi, P.A.; Clanet, M.; Comi, G.; Fox, R.J.; Freedman, M.S.; Goodman, A.D.; Inglese, M.; Kappos, L.; Kieseier, B.C.; Lincoln, J.A.; Lubetzki, C.; Miller, A.E.; Montalban, X.; OConnor, P.W.; Petkau, J.; Pozzilli, C.; Rudick, R.A.; Sormani, M.P.; Stüve, O.; Waubant, E.; Polman, C.H. Defining the clinical course of multiple sclerosis : The 2013 revisions. Neurology, 2014, 83(3), 278-286. doi: 10.1212/WNL.0000000000000560 PMID: 24871874
- Miller, D.; Barkhof, F.; Montalban, X.; Thompson, A.; Filippi, M. Clinically isolated syndromes suggestive of multiple sclerosis, part I : Natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol., 2005, 4(5), 281-288. doi: 10.1016/S1474-4422(05)70071-5 PMID: 15847841
- Okuda, D.T.; Mowry, E.M.; Beheshtian, A.; Waubant, E.; Baranzini, S.E.; Goodin, D.S.; Hauser, S.L.; Pelletier, D. Incidental MRI anomalies suggestive of multiple sclerosis : The radiologically isolated syndrome. Neurology, 2009, 72(9), 800-805. doi: 10.1212/01.wnl.0000335764.14513.1a PMID: 19073949
- Klineova, S.; Lublin, F.D. Clinical course of multiple sclerosis. Cold Spring Harb. Perspect. Med., 2018, 8(9), a028928. doi: 10.1101/cshperspect.a028928 PMID: 29358317
- Alroughani, R.; Yamout, B. Multiple Sclerosis. Semin. Neurol., 2018, 38(2), 212-225. doi: 10.1055/s-0038-1649502 PMID: 29791948
- Rovaris, M.; Confavreux, C.; Furlan, R.; Kappos, L.; Comi, G.; Filippi, M. Secondary progressive multiple sclerosis : Current knowledge and future challenges. Lancet Neurol., 2006, 5(4), 343-354. doi: 10.1016/S1474-4422(06)70410-0 PMID: 16545751
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; Hauser, S.L. Contribution of relapseindependent progression vs relapseassociated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol., 2020, 77(9), 1132-1140. doi: 10.1001/jamaneurol.2020.1568 PMID: 32511687
- Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol., 2015, 28(3), 193-205. doi: 10.1097/WCO.0000000000000206 PMID: 25887774
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol., 2018, 31(6), 752-759. doi: 10.1097/WCO.0000000000000622 PMID: 30300239
- Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; Stern, W.A.; Bevan, C.; Romeo, A.; Goodin, D.S.; Gelfand, J.M.; Graves, J.; Green, A.J.; Wilson, M.R.; Zamvil, S.S.; Zhao, C.; Gomez, R.; Ragan, N.R.; Rush, G.Q.; Barba, P.; Santaniello, A.; Baranzini, S.E.; Oksenberg, J.R.; Henry, R.G.; Hauser, S.L. Silent progression in disease activityfree relapsing multiple sclerosis. Ann. Neurol., 2019, 85(5), 653-666. doi: 10.1002/ana.25463 PMID: 30851128
- Portaccio, E.; Bellinvia, A.; Fonderico, M.; Pastò, L.; Razzolini, L.; Totaro, R.; Spitaleri, D.; Lugaresi, A.; Cocco, E.; Onofrj, M.; Di Palma, F.; Patti, F.; Maimone, D.; Valentino, P.; Confalonieri, P.; Protti, A.; Sola, P.; Lus, G.; Maniscalco, G.T.; Brescia Morra, V.; Salemi, G.; Granella, F.; Pesci, I.; Bergamaschi, R.; Aguglia, U.; Vianello, M.; Simone, M.; Lepore, V.; Iaffaldano, P.; Filippi, M.; Trojano, M.; Amato, M.P. Progression is independent of relapse activity in early multiple sclerosis: A real-life cohort study. Brain, 2022, 145(8), 2796-2805. doi: 10.1093/brain/awac111 PMID: 35325059
- Vollmer, T.L.; Nair, K.V.; Williams, I.M.; Alvarez, E. Multiple sclerosis phenotypes as a continuum. Neurol. Clin. Pract., 2021, 11(4), 342-351. doi: 10.1212/CPJ.0000000000001045 PMID: 34476126
- t Hart, B.A.; Bauer, J.; Muller, H.J.; Melchers, B.; Nicolay, K.; Brok, H.; Bontrop, R.E.; Lassmann, H.; Massacesi, L. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: A correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am. J. Pathol., 1998, 153(2), 649-663. doi: 10.1016/S0002-9440(10)65606-4 PMID: 9708823
- t Hart, B.A.; Massacesi, L. Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J. Neuropathol. Exp. Neurol., 2009, 68(4), 341-355. doi: 10.1097/NEN.0b013e31819f1d24 PMID: 19337065
- Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; Lassmann, H.; Lucchinetti, C.F. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol., 2015, 78(5), 710-721. doi: 10.1002/ana.24497 PMID: 26239536
- Massacesi, L. Compartmentalization of the immune response in the central nervous system and natural history of multiple sclerosis. implications for therapy. Clin. Neurol. Neurosurg., 2002, 104(3), 177-181. doi: 10.1016/S0303-8467(02)00035-5 PMID: 12127651
- Machado-Santos, J.; Saji, E.; Tröscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.; Lassmann, H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain, 2018, 141(7), 2066-2082. doi: 10.1093/brain/awy151 PMID: 29873694
- Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol., 2004, 14(2), 164-174. doi: 10.1111/j.1750-3639.2004.tb00049.x PMID: 15193029
- Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130(4), 1089-1104. doi: 10.1093/brain/awm038 PMID: 17438020
- Absinta, M.; Vuolo, L.; Rao, A.; Nair, G.; Sati, P.; Cortese, I.C.M.; Ohayon, J.; Fenton, K.; Reyes-Mantilla, M.I.; Maric, D.; Calabresi, P.A.; Butman, J.A.; Pardo, C.A.; Reich, D.S. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology, 2015, 85(1), 18-28. doi: 10.1212/WNL.0000000000001587 PMID: 25888557
- Brownlee, W.J.; Swanton, J.K.; Altmann, D.R.; Ciccarelli, O.; Miller, D.H. Earlier and more frequent diagnosis of multiple sclerosis using the McDonald criteria: Figure 1. J. Neurol. Neurosurg. Psychiatry, 2015, 86(5), 584-585. doi: 10.1136/jnnp-2014-308675 PMID: 25412872
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; Sandberg-Wollheim, M.; Sibley, W.; Thompson, A.; Van Den Noort, S.; Weinshenker, B.Y.; Wolinsky, J.S. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol., 2001, 50(1), 121-127. doi: 10.1002/ana.1032 PMID: 11456302
- Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; OConnor, P.W.; Sandberg-Wollheim, M.; Thompson, A.J.; Weinshenker, B.G.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2005 Revisions to the "McDonald Criteria". Ann. Neurol., 2005, 58(6), 840-846. doi: 10.1002/ana.20703 PMID: 16283615
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Lublin, F.D.; Montalban, X.; OConnor, P.; Sandberg-Wollheim, M.; Thompson, A.J.; Waubant, E.; Weinshenker, B.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol., 2011, 69(2), 292-302. doi: 10.1002/ana.22366 PMID: 21387374
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; Fujihara, K.; Galetta, S.L.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Marrie, R.A.; Miller, A.E.; Miller, D.H.; Montalban, X.; Mowry, E.M.; Sorensen, P.S.; Tintoré, M.; Traboulsee, A.L.; Trojano, M.; Uitdehaag, B.M.J.; Vukusic, S.; Waubant, E.; Weinshenker, B.G.; Reingold, S.C.; Cohen, J.A. Diagnosis of multiple sclerosis: 2017 Revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173. doi: 10.1016/S1474-4422(17)30470-2 PMID: 29275977
- Montalban, X.; Tintoré, M.; Swanton, J.; Barkhof, F.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Kappos, L.; Palace, J.; Polman, C.; Rovaris, M.; de Stefano, N.; Thompson, A.; Yousry, T.; Rovira, A.; Miller, D.H. MRI criteria for MS in patients with clinically isolated syndromes. Neurology, 2010, 74(5), 427-434. doi: 10.1212/WNL.0b013e3181cec45c PMID: 20054006
- Solomon, A.J.; Bourdette, D.N.; Cross, A.H.; Applebee, A.; Skidd, P.M.; Howard, D.B.; Spain, R.I.; Cameron, M.H.; Kim, E.; Mass, M.K.; Yadav, V.; Whitham, R.H.; Longbrake, E.E.; Naismith, R.T.; Wu, G.F.; Parks, B.J.; Wingerchuk, D.M.; Rabin, B.L.; Toledano, M.; Tobin, W.O.; Kantarci, O.H.; Carter, J.L.; Keegan, B.M.; Weinshenker, B.G. The contemporary spectrum of multiple sclerosis misdiagnosis. Neurology, 2016, 87(13), 1393-1399. doi: 10.1212/WNL.0000000000003152 PMID: 27581217
- Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of multiple sclerosis: Progress and challenges. Lancet, 2017, 389(10076), 1336-1346. doi: 10.1016/S0140-6736(16)30959-X PMID: 27889190
- Solomon, A.J.; Naismith, R.T.; Cross, A.H. Misdiagnosis of multiple sclerosis. Neurology, 2019, 92(1), 26-33. doi: 10.1212/WNL.0000000000006583 PMID: 30381369
- Filippi, M.; Danesi, R.; Derfuss, T.; Duddy, M.; Gallo, P.; Gold, R.; Havrdová, E.K.; Kornek, B.; Saccà, F.; Tintoré, M.; Weber, J.; Trojano, M. Early and unrestricted access to high-efficacy disease-modifying therapies: A consensus to optimize benefits for people living with multiple sclerosis. J. Neurol., 2022, 269(3), 1670-1677. doi: 10.1007/s00415-021-10836-8 PMID: 34626224
- Dawson, J.W. The histology of disseminated sclerosis. Edinburgh Med. J., 1916, 17(4), 229-241.
- Banwell, B.; Giovannoni, G.; Hawkes, C.; Lublin, F. Editors welcome and a working definition for a multiple sclerosis cure. Mult. Scler. Relat. Disord., 2013, 2(2), 65-67. doi: 10.1016/j.msard.2012.12.001 PMID: 25877624
- Giovannoni, G.; Turner, B.; Gnanapavan, S.; Offiah, C.; Schmierer, K.; Marta, M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult. Scler. Relat. Disord., 2015, 4(4), 329-333. doi: 10.1016/j.msard.2015.04.006 PMID: 26195051
- Laurson-Doube, J.; Rijke, N.; Helme, A.; Baneke, P.; Banwell, B.; Viswanathan, S.; Hemmer, B.; Yamout, B. Ethical use of off-label disease-modifying therapies for multiple sclerosis. Mult. Scler., 2021, 27(9), 1403-1410. doi: 10.1177/13524585211030207 PMID: 34304636
- Marjolein, W.; Lisman, J.; Hoebert, J.; Moltó Puigmarti, C.; Dijk, L.; Langedijk, J.; Marchange, S.; Damen, N.; Vervloet, M. Directorate- general for health and food safety (European Commission); study on off-label use of medicinal products in the European union: Report: Publications office of the European union: LU, 2019. doi: 10.2875/464022
- Mcgeown, M.; Donaldson, R.A.; Kennedy, J.A.; Douglas, J.F.; Hill, C.M.; Loughridge, W.G.G.; Middleton, D. Ten-year results of renal transplantation with azathioprine and prednisolone as only immunosuppression. Lancet, 1988, 331(8592), 983-985. doi: 10.1016/S0140-6736(88)91792-8 PMID: 2896839
- Andreone, P.A.; Olivari, M.T.; Elick, B.; Arentzen, C.E.; Sibley, R.K.; Bolman, R.M.; Simmons, R.L.; Ring, W.S. Reduction of infectious complications following heart transplantation with triple-drug immunotherapy. J. Heart Transplant., 1986, 5(1), 13-19. PMID: 3302153
- British and Dutch Multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet, 1988, 2(8604), 179-183. PMID: 2899660
- De Silva, M.; Hazleman, B.L. Long-term azathioprine in rheumatoid arthritis: A double-blind study. Ann. Rheum. Dis., 1981, 40(6), 560-563. doi: 10.1136/ard.40.6.560 PMID: 7036921
- Ginzler, E.; Sharon, E.; Diamond, H.; Kaplan, D. Long-term maintenance therapy with azathioprine in systemic lupus erythematosus. Arthritis Rheum., 1975, 18(1), 27-34. doi: 10.1002/art.1780180106 PMID: 1115745
- Christensen, E.; Neuberger, J.; Crowe, J.; Altman, D.G.; Popper, H.; Portmann, B.; Doniach, D.; Ranek, L.; Tygstrup, N.; Williams, R. Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Gastroenterology, 1985, 89(5), 1084-1091. doi: 10.1016/0016-5085(85)90213-6 PMID: 3899841
- Candy, S.; Wright, J.; Gerber, M.; Adams, G.; Gerig, M.; Goodman, R. A controlled double blind study of azathioprine in the management of crohns disease. Gut, 1995, 37(5), 674-678. doi: 10.1136/gut.37.5.674 PMID: 8549944
- Bouhnik, Y.; Scemama, G.; Taï, R.; Matuchansky, C.; Rambaud, J-C.; Lémann, M.; Modigliani, R.; Mary, J-Y. Long-term followup of patients with crohns disease treated with azathioprine or 6-mercaptopurine. Lancet, 1996, 347(8996), 215-219. doi: 10.1016/S0140-6736(96)90402-X PMID: 8551879
- Lewis, J.D.; Schwartz, J.S.; Lichtenstein, G.R. Azathioprine for maintenance of remission in crohns disease: Benefits outweigh the risk of lymphoma. Gastroenterology, 2000, 118(6), 1018-1024. doi: 10.1016/S0016-5085(00)70353-2 PMID: 10833475
- Present, D.H.; Korelitz, B.I.; Wisch, N.; Glass, J.L.; Sachar, D.B.; Pasternack, B.S. Treatment of crohns disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N. Engl. J. Med., 1980, 302(18), 981-987. doi: 10.1056/NEJM198005013021801 PMID: 6102739
- Dimitriu, A.; Fauci, A.S. Activation of human B lymphocytes. XI. Differential effects of azathioprine on B lymphocytes and lymphocyte subpopulations regulating B cell function. J. Immunol., 1978, 121(6), 2335-2339. doi: 10.4049/jimmunol.121.6.2335 PMID: 363943
- Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol., 1992, 43(4), 329-339. doi: 10.1007/BF02220605 PMID: 1451710
- Röllinghoff, M.; Schrader, J.; Wagner, H. Effect of azathioprine and cytosine arabinoside on humoral and cellular immunity in vitro. Clin. Exp. Immunol., 1973, 15(2), 261-269. PMID: 4543428
- Abdou, N.I.; Zweiman, B.; Casella, S.R. Effects of azathioprine therapy on bone marrow-dependent and thymus-dependent cells in man. Clin. Exp. Immunol., 1973, 13(1), 55-64. PMID: 4271771
- Bach, M.A.; Bach, J.F. Activities of immunosuppressive agents in vitro. II. Different timing of azathioprine and methotrexate in inhibition and stimulation of mixed lymphocyte reaction. Clin. Exp. Immunol., 1972, 11(1), 89-98. PMID: 5038773
- Maltzman, J.S.; Koretzky, G.A. Azathioprine: Old drug, new actions. J. Clin. Invest., 2003, 111(8), 1122-1124. doi: 10.1172/JCI200318384 PMID: 12697731
- Ellison, G.W.; Myers, L.W.; Mickey, M.R.; Graves, M.C.; Tourtellotte, W.W.; Syndulko, K.; Holevoet-Howson, M.I.; Lerner, C.D.; Frane, M.V.; Pettier-Jennings, P. A placebo‐controlled, randomized, double‐masked, variable dosage, clinical trial of azathioprine with and without methylprednisolone in multiple sclerosis. Neurology, 1989, 39(8), 1018-1026. doi: 10.1212/WNL.39.8.1018 PMID: 2668784
- Goodkin, D.E.; Bailly, R.C.; Teetzen, M.L.; Hertsgaard, D.; Beatty, W.W. The efficacy of azathioprine in relapsing : Remitting multiple sclerosis. Neurology, 1991, 41(1), 20-25. doi: 10.1212/WNL.41.1.20 PMID: 1985289
- Milanese, C.; La Mantia, L.; Salmaggi, A.; Eoli, M. A double blind study on azathioprine efficacy in multiple sclerosis: Final report. J. Neurol., 1993, 240(5), 295-298. doi: 10.1007/BF00838165 PMID: 8326334
- Clegg, A.; Bryant, J.; Milne, R. Disease-modifying drugs for multiple sclerosis: A rapid and systematic review. Health Technol. Assess., 2000, 4(9), i-iv, 1-101. doi: 10.3310/hta4090 PMID: 10944743
- Yudkin, P.L.; Ellison, G.W.; Ghezzi, A.; Goodkin, D.E.; Hughes, R.A.C.; McPherson, K.; Mertin, J.; Milanese, C. Overview of azathioprine treatment in multiple sclerosis. Lancet, 1991, 338(8774), 1051-1055. doi: 10.1016/0140-6736(91)91909-E PMID: 1681364
- Goodin, D.S.; Frohman, E.M.; Garmany, G.P., Jr; Halper, J.; Likosky, W.H.; Lublin, F.D.; Silberberg, D.H.; Stuart, W.H.; van den Noort, S. Disease modifying therapies in multiple sclerosis: Report of the therapeutics and technology assessment subcommittee of the american academy of neurology and the ms council for clinical practice guidelines. Neurology, 2002, 58(2), 169-178. doi: 10.1212/WNL.58.2.169 PMID: 11805241
- Casetta, I.; Iuliano, G.; Filippini, G. Azathioprine for multiple sclerosis. Cochrane Libr., 2007, 2007(4), CD003982. doi: 10.1002/14651858.CD003982.pub2 PMID: 17943809
- Filippini, G.; Munari, L.; Incorvaia, B.; Ebers, G.C.; Polman, C.; DAmico, R.; Rice, G.P.A. Interferons in relapsing remitting multiple sclerosis: A systematic review. Lancet, 2003, 361(9357), 545-552. doi: 10.1016/S0140-6736(03)12512-3 PMID: 12598138
- Palace, J.; Rothwell, P. New treatments and azathioprine in multiple sclerosis. Lancet, 1997, 350(9073), 261. doi: 10.1016/S0140-6736(97)24030-4 PMID: 9242805
- Etemadifar, M.; Janghorbani, M.; Shaygannejad, V. Comparison of interferon beta products and azathioprine in the treatment of relapsing-remitting multiple sclerosis. J. Neurol., 2007, 254(12), 1723-1728. doi: 10.1007/s00415-007-0637-1 PMID: 18074075
- Milanese, C.; La Mantia, L.; Salmaggi, A.; Caputo, D. Azathioprine and interferon beta-1b treatment in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2001, 70(3), 413-414. doi: 10.1136/jnnp.70.3.413 PMID: 11181879
- Cavazzuti, M.; Merelli, E.; Tassone, G.; Mavilla, L. Lesion load quantification in serial MR of early relapsing multiple sclerosis patients in azathioprine treatment. A retrospective study. Eur. Neurol., 1997, 38(4), 284-290. doi: 10.1159/000113395 PMID: 9434087
- Massacesi, L.; Parigi, A.; Barilaro, A.; Repice, A.M.; Pellicanò, G.; Konze, A.; Siracusa, G.; Taiuti, R.; Amaducci, L. Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch. Neurol., 2005, 62(12), 1843-1847. doi: 10.1001/archneur.62.12.1843 PMID: 16344342
- Massacesi, L.; Tramacere, I.; Amoroso, S.; Battaglia, M.A.; Benedetti, M.D.; Filippini, G.; La Mantia, L.; Repice, A.; Solari, A.; Tedeschi, G.; Milanese, C. Azathioprine versus beta interferons for relapsing-remitting multiple sclerosis: A multicentre randomized non-inferiority trial. PLoS One, 2014, 9(11), e113371. doi: 10.1371/journal.pone.0113371 PMID: 25402490
- Confavreux, C.; Saddier, P.; Grimaud, J.; Moreau, T.; Adeleine, P.; Aimard, G. Risk of cancer from azathioprine therapy in multiple sclerosis. Neurology, 1996, 46(6), 1607-1612. doi: 10.1212/WNL.46.6.1607 PMID: 8649558
- La Mantia, L.; Benedetti, M.D.; Sant, M.; dArma, A.; Di Tella, S.; Lillini, R.; Mendozzi, L.; Marangi, A.; Turatti, M.; Caputo, D.; Rovaris, M. Cancer risk for multiple sclerosis patients treated with azathioprine and disease-modifying therapies: an Italian observational study. Neurol. Sci., 2021, 42(12), 5157-5163. doi: 10.1007/s10072-021-05216-z PMID: 33791892
- EMA Jayempi. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/jayempi
- Ali, R.; Nicholas, R.S.J.; Muraro, P.A. Drugs in development for relapsing multiple sclerosis. Drugs, 2013, 73(7), 625-650. doi: 10.1007/s40265-013-0030-6 PMID: 23609782
- Muraro, P.A.; Leist, T.; Bielekova, B.; McFarland, H.F. VLA-4/CD49d downregulated on primed T lymphocytes during interferon-β therapy in multiple sclerosis. J. Neuroimmunol., 2000, 111(1-2), 186-194. doi: 10.1016/S0165-5728(00)00362-3 PMID: 11063837
- Jiang, H.; Milo, R.; Swoveland, P.; Johnson, K.P.; Panitch, H.; Dhib-Jalbut, S. Interferon β-lb reduces Interferon γ-induced antigen-presenting capacity of human glial and B cells. J. Neuroimmunol., 1995, 61(1), 17-25. doi: 10.1016/0165-5728(95)00072-A PMID: 7560008
- Kieseier, B.C. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs, 2011, 25(6), 491-502. doi: 10.2165/11591110-000000000-00000 PMID: 21649449
- Durelli, L.; Verdun, E.; Barbero, P.; Bergui, M.; Versino, E.; Ghezzi, A.; Montanari, E.; Zaffaroni, M. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: Results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet, 2002, 359(9316), 1453-1460. doi: 10.1016/S0140-6736(02)08430-1 PMID: 11988242
- Panitch, H.; Goodin, D.S.; Francis, G.; Chang, P.; Coyle, P.K.; OConnor, P.; Monaghan, E.; Li, D.; Weinshenker, B. Randomized, comparative study of interferon -1a treatment regimens in MS: The EVIDENCE trial. Neurology, 2002, 59(10), 1496-1506. doi: 10.1212/01.WNL.0000034080.43681.DA PMID: 12451188
- A study to evaluate the safety, tolerability, and efficacy of BIIB017 (peginterferon beta-1a) in pediatric participants for the treatment of relapsing-remitting multiple sclerosis. NCT03958877, 2014.
- Harris, J.M.; Martin, N.E.; Modi, M. Pegylation. Clin. Pharmacokinet., 2001, 40(7), 539-551. doi: 10.2165/00003088-200140070-00005 PMID: 11510630
- Dhib-Jalbut, S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology, 2002, 58(8, Supplement 4)(4), S3-S9. doi: 10.1212/WNL.58.8_suppl_4.S3 PMID: 11971121
- Fridkis-Hareli, M.; Teitelbaum, D.; Gurevich, E.; Pecht, I.; Brautbar, C.; Kwon, O.J.; Brenner, T.; Arnon, R.; Sela, M. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells : Specificity and promiscuity. Proc. Natl. Acad. Sci., 1994, 91(11), 4872-4876. doi: 10.1073/pnas.91.11.4872 PMID: 7515181
- Rommer, P.S.; Milo, R.; Han, M.H.; Satyanarayan, S.; Sellner, J.; Hauer, L.; Illes, Z.; Warnke, C.; Laurent, S.; Weber, M.S.; Zhang, Y.; Stuve, O. Immunological aspects of approved ms therapeutics. Front. Immunol., 2019, 10, 1564. doi: 10.3389/fimmu.2019.01564 PMID: 31354720
- Ziemssen, T.; Kümpfel, T.; Klinkert, W.E.F.; Neuhaus, O.; Hohlfeld, R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: Implications for multiple sclerosis therapy. Brain, 2002, 125(11), 2381-2391. doi: 10.1093/brain/awf252 PMID: 12390966
- Kuerten, S.; Jackson, L.J.; Kaye, J.; Vollmer, T.L. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs, 2018, 32(11), 1039-1051. doi: 10.1007/s40263-018-0567-8 PMID: 30315499
- In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury Internet. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. 2018 Mar 14.https://pubmed.ncbi.nlm.nih.gov/31644036/ PMID: 31644036
- Phase III Randomized. Double-Blind, Placebo-Controlled Study of Copolymer 1 for Relapsing-Remitting Multiple Sclerosis. Available from: https://clinicaltrials.gov/ct2/show/NCT00004814
- Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; Vollmer, T.; Weiner, L.P.; Wolinsky, J.S. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology, 1995, 45(7), 1268-1276. doi: 10.1212/WNL.45.7.1268 PMID: 7617181
- Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; Vollmer, T.; Weiner, L.P.; Wolinsky, J.S. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology, 1998, 50(3), 701-708. doi: 10.1212/WNL.50.3.701 PMID: 9521260
- Bell, C.; Anderson, J.; Ganguly, T.; Prescott, J.; Capila, I.; Lansing, J.C.; Sachleben, R.; Iyer, M.; Fier, I.; Roach, J.; Storey, K.; Miller, P.; Hall, S.; Kantor, D.; Greenberg, B.M.; Nair, K.; Glajch, J. Development of glatopa® (glatiramer acetate): The first fda-approved generic disease-modifying therapy for relapsing forms of multiple sclerosis. J. Pharm. Pract., 2018, 31(5), 481-488. doi: 10.1177/0897190017725984 PMID: 28847230
- Teva branded pharmaceutical products RD, inc. A multinational, multicenter, randomized, parallel-group study performed in subjects with relapsing-remitting multiple sclerosis (RRMS) to assess the efficacy, safety and tolerability of glatiramer acetate (GA) injection 40 mg administered three times a week compared to placebo in a double-blind design; clinicaltrials.gov. NCT01067521, 2021.
- Constantinescu, C.; Tanasescu; Evangelou Role of oral teriflunomide in the management of multiple sclerosis. Neuropsychiatr. Dis. Treat., 2013, 9, 539-553. doi: 10.2147/NDT.S31248 PMID: 23637535
- Xu, X.; Williams, J.W.; Bremer, E.G.; Finnegan, A.; Chong, A.S.F. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J. Biol. Chem., 1995, 270(21), 12398-12403. doi: 10.1074/jbc.270.21.12398 PMID: 7759480
- Siemasko, K.; Chong, A.S.F.; Jäck, H.M.; Gong, H.; Williams, J.W.; Finnegan, A. Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J. Immunol., 1998, 160(4), 1581-1588. doi: 10.4049/jimmunol.160.4.1581 PMID: 9469413
- Dimitrova, P.; Skapenko, A.; Herrmann, M.L.; Schleyerbach, R.; Kalden, J.R.; Schulze-Koops, H. Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J. Immunol., 2002, 169(6), 3392-3399. doi: 10.4049/jimmunol.169.6.3392 PMID: 12218161
- Claussen, M.C.; Korn, T. Immune mechanisms of new therapeutic strategies in MS Teriflunomide. Clin. Immunol., 2012, 142(1), 49-56. doi: 10.1016/j.clim.2011.02.011 PMID: 21367665
- Comi, G.; Freedman, M.S.; Kappos, L.; Olsson, T.P.; Miller, A.E.; Wolinsky, J.S.; OConnor, P.W.; Benamor, M.; Dukovic, D.; Truffinet, P.; Leist, T.P. Pooled safety and tolerability data from four placebocontrolled teriflunomide studies and extensions. Mult. Scler. Relat. Disord., 2016, 5, 97-104. doi: 10.1016/j.msard.2015.11.006 PMID: 26856952
- EMA Aubagio. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/aubagio
- Sanofi a randomized, double-blind, placebo-controlled, parallel group design study to evaluate the efficacy and safety of teriflunomide in reducing the frequency of relapses and delaying the accumulation of physical disability in subjects with multiple sclerosis with relapses; clinicaltrials.gov. NCT01252355, 2013.
- OConnor, P.; Wolinsky, J.S.; Confavreux, C.; Comi, G.; Kappos, L.; Olsson, T.P.; Benzerdjeb, H.; Truffinet, P.; Wang, L.; Miller, A.; Freedman, M.S. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med., 2011, 365(14), 1293-1303. doi: 10.1056/NEJMoa1014656 PMID: 21991951
- Sanofi a multi-center double-blind parallel-group placebo-controlled study of the efficacy and safety of teriflunomide in patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT01252355, 2016.
- Confavreux, C.; OConnor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Olsson, T.P.; Wolinsky, J.S.; Bagulho, T.; Delhay, J.L.; Dukovic, D.; Truffinet, P.; Kappos, L. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol., 2014, 13(3), 247-256. doi: 10.1016/S1474-4422(13)70308-9 PMID: 24461574
- Scannevin, R.H.; Chollate, S.; Jung, M.; Shackett, M.; Patel, H.; Bista, P.; Zeng, W.; Ryan, S.; Yamamoto, M.; Lukashev, M.; Rhodes, K.J. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther., 2012, 341(1), 274-284. doi: 10.1124/jpet.111.190132 PMID: 22267202
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426. doi: 10.1146/annurev-pharmtox-011112-140320 PMID: 23294312
- Hammer, A.; Waschbisch, A.; Kuhbandner, K.; Bayas, A.; Lee, D.H.; Duscha, A.; Haghikia, A.; Gold, R.; Linker, R.A. The NRF 2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol., 2018, 5(6), 668-676. doi: 10.1002/acn3.553 PMID: 29928650
- Havrdova, E.; Hutchinson, M.; Kurukulasuriya, N.C.; Raghupathi, K.; Sweetser, M.T.; Dawson, K.T.; Gold, R. Oral BG-12 (dimethyl fumarate) for relapsing-remitting multiple sclerosis: A review of define and confirm. evaluation of: Gold R, Kappos L, Arnold D, et al. placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367:1098-107; and Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367:1087-97. Expert Opin. Pharmacother., 2013, 14(15), 2145-2156. doi: 10.1517/14656566.2013.826190 PMID: 23971970
- Biogen a randomized, multicenter, double-blind, placebo-controlled, dose-comparison study to determine the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00451451, 2015.
- Gold, R.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Giovannoni, G.; Selmaj, K.; Tornatore, C.; Sweetser, M.T.; Yang, M.; Sheikh, S.I.; Dawson, K.T. Placebocontrolled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med., 2012, 367(12), 1098-1107. doi: 10.1056/NEJMoa1114287 PMID: 22992073
- Biogen a randomized, multicenter, placebo-controlled and active reference (Glatiramer Acetate) comparison study to evaluate the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00451451, 2015.
- Fox, R.J.; Miller, D.H.; Phillips, J.T.; Hutchinson, M.; Havrdova, E.; Kita, M.; Yang, M.; Raghupathi, K.; Novas, M.; Sweetser, M.T.; Viglietta, V.; Dawson, K.T. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med., 2012, 367(12), 1087-1097. doi: 10.1056/NEJMoa1206328 PMID: 22992072
- Aktas, O.; Küry, P.; Kieseier, B.; Hartung, H.P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat. Rev. Neurol., 2010, 6(7), 373-382. doi: 10.1038/nrneurol.2010.76 PMID: 20551946
- Brinkmann, V.; Davis, M.D.; Heise, C.E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C.A.; Zollinger, M.; Lynch, K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 2002, 277(24), 21453-21457. doi: 10.1074/jbc.C200176200 PMID: 11967257
- EMA Gilenya Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/gilenya
- Novartis a 24-month, double-blind, randomized, multicenter, placebo-controlled, parallel-group study comparing the efficacy and safety of fingolimod 1.25 mg and 0.5 mg administered orally once daily versus placebo in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00731692, 2012.
- Novartis a 12-month double-blind, randomized, multicenter, active-controlled, parallel-group study comparing the efficacy and safety of 0.5 mg and 1.25 mg fingolimod (FTY720) administered orally once daily versus interferon ß-1a (avonex) administered im once weekly in patients with relapsing-remitting multiple sclerosis with optional extension phase; clinicaltrials.gov. NCT00670449, 2017.
- Kappos, L.; Radue, E.W.; OConnor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; Burtin, P. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med., 2010, 362(5), 387-401. doi: 10.1056/NEJMoa0909494 PMID: 20089952
- Novartis double-blind, randomized, placebo-controlled, parallel-group, multicenter study evaluating the safety,tolerability and effect on MRI lesion parameters of FTY720 vs placebo in patients with relapsing multiple sclerosis including 18 month extension phase. clinicaltrials.gov. 2017.
- Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; OConnor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 355(11), 1124-1140. doi: 10.1056/NEJMoa052643 PMID: 16971719
- Gergely, P.; Nuesslein-Hildesheim, B.; Guerini, D.; Brinkmann, V.; Traebert, M.; Bruns, C.; Pan, S.; Gray, N.S.; Hinterding, K.; Cooke, N.G.; Groenewegen, A.; Vitaliti, A.; Sing, T.; Luttringer, O.; Yang, J.; Gardin, A.; Wang, N.; Crumb, W.J., Jr; Saltzman, M.; Rosenberg, M.; Wallström, E. The selective sphingosine 1‐phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species‐specific effects on heart rate. Br. J. Pharmacol., 2012, 167(5), 1035-1047. doi: 10.1111/j.1476-5381.2012.02061.x PMID: 22646698
- Chun, J.; Hartung, H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 2010, 33(2), 91-101. doi: 10.1097/WNF.0b013e3181cbf825 PMID: 20061941
- Tavares, A.; Barret, O.; Alagille, D.; Morley, T.; Papin, C.; Maguire, R.; Briard, E.; Auberson, Y.; Tamagnan, G. Brain distribution of MS565, an imaging analogue of siponimod (BAF312), in nonhuman primates (P1.168). Neurology, 2014, 82.
- Brana, C.; Frossard, M.J.; Pescini Gobert, R.; Martinier, N.; Boschert, U.; Seabrook, T.J. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol. Appl. Neurobiol., 2014, 40(5), 564-578. doi: 10.1111/nan.12048 PMID: 23551178
- Kappos, L.; Li, D.K.B.; Stüve, O.; Hartung, H.P.; Freedman, M.S.; Hemmer, B.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; Hunter, B.; Arnould, S.; Wallström, E.; Selmaj, K. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis. JAMA Neurol., 2016, 73(9), 1089-1098. doi: 10.1001/jamaneurol.2016.1451 PMID: 27380540
- EMA Mayzent. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/mayzent
- Novartis Pharmaceuticals. Novartis pharmaceuticals a dose blinded extension study to the CBAF312A2201 study to evaluate long-term safety, tolerability and efficacy of BAF312 given orally once daily in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00879658, 2018.
- Novartis Pharmaceuticals. Novartis pharmaceuticals a multicenter, randomized, double-blind, parallel-group, placebo-controlled variable treatment duration study evaluating the efficacy and safety of siponimod (BAF312) in patients with secondary progressive multiple sclerosis followed by extended treatment with open-label BAF312.; clinicaltrials.gov. NCT01665144, 2022.
- Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; Wolf, C.; Wallström, E.; Dahlke, F.; Achiron, A.; Achtnichts, L.; Agan, K.; Akman-Demir, G.; Allen, A.B.; Antel, J.P.; Antiguedad, A.R.; Apperson, M.; Applebee, A.M.; Ayuso, G.I.; Baba, M.; Bajenaru, O.; Balasa, R.; Balci, B.P.; Barnett, M.; Bass, A.; Becker, V.U.; Bejinariu, M.; Bergh, F.T.; Bergmann, A.; Bernitsas, E.; Berthele, A.; Bhan, V.; Bischof, F.; Bjork, R.J.; Blevins, G.; Boehringer, M.; Boerner, T.; Bonek, R.; Bowen, J.D.; Bowling, A.; Boyko, A.N.; Boz, C.; Bracknies, V.; Braune, S.; Brescia Morra, V.; Brochet, B.; Brola, W.; Brownstone, P.K.; Brozman, M.; Brunet, D.; Buraga, I.; Burnett, M.; Buttmann, M.; Butzkueven, H.; Cahill, J.; Calkwood, J.C.; Camu, W.; Cascione, M.; Castelnovo, G.; Centonze, D.; Cerqueira, J.; Chan, A.; Cimprichova, A.; Cohan, S.; Comi, G.; Conway, J.; Cooper, J.A.; Corboy, J.; Correale, J.; Costell, B.; Cottrell, D.A.; Coyle, P.K.; Craner, M.; Cui, L.; Cunha, L.; Czlonkowska, A.; da Silva, A.M.; de Sa, J.; de Seze, J.; Debouverie, M.; Debruyne, J.; Decoo, D.; Defer, G.; Derfuss, T.; Deri, N.H.; Dihenia, B.; Dioszeghy, P.; Donath, V.; Dubois, B.; Duddy, M.; Duquette, P.; Edan, G.; Efendi, H.; Elias, S.; Emrich, P.J.; Estruch, B.C.; Evdoshenko, E.P.; Faiss, J.; Fedyanin, A.S.; Feneberg, W.; Fermont, J.; Fernandez, O.F.; Ferrer, F.C.; Fink, K.; Ford, H.; Ford, C.; Francia, A.; Freedman, M.; Frishberg, B.; Galgani, S.; Garmany, G.P.; Gehring, K.; Gitt, J.; Gobbi, C.; Goldstick, L.P.; Gonzalez, R.A.; Grandmaison, F.; Grigoriadis, N.; Grigorova, O.; Grimaldi, L.M.E.; Gross, J.; Gross-Paju, K.; Gudesblatt, M.; Guillaume, D.; Haas, J.; Hancinova, V.; Hancu, A.; Hardiman, O.; Harmjanz, A.; Heidenreich, F.R.; Hengstman, G.J.D.; Herbert, J.; Herring, M.; Hodgkinson, S.; Hoffmann, O.M.; Hofmann, W.E.; Honeycutt, W.D.; Hua, L.H.; Huang, D.; Huang, Y.; Huang, D.R.; Hupperts, R.; Imre, P.; Jacobs, A.K.; Jakab, G.; Jasinska, E.; Kaida, K.; Kalnina, J.; Kaprelyan, A.; Karelis, G.; Karussis, D.; Katz, A.; Khabirov, F.A.; Khatri, B.; Kimura, T.; Kister, I.; Kizlaitiene, R.; Klimova, E.; Koehler, J.; Komatineni, A.; Kornhuber, A.; Kovacs, K.; Koves, A.; Kozubski, W.; Krastev, G.; Krupp, L.B.; Kurca, E.; Lassek, C.; Laureys, G.; Lee, L.; Lensch, E.; Leutmezer, F.; Li, H.; Linker, R.A.; Linnebank, M.; Liskova, P.; Llanera, C.; Lu, J.; Lutterotti, A.; Lycke, J.; Macdonell, R.; Maciejowski, M.; Maeurer, M.; Magzhanov, R.V.; Maida, E-M.; Malciene, L.; Mao-Draayer, Y.; Marfia, G.A.; Markowitz, C.; Mastorodimos, V.; Matyas, K.; Meca-Lallana, J.; Merino, J.A.G.; Mihetiu, I.G.; Milanov, I.; Miller, A.E.; Millers, A.; Mirabella, M.; Mizuno, M.; Montalban, X.; Montoya, L.; Mori, M.; Mueller, S.; Nakahara, J.; Nakatsuji, Y.; Newsome, S.; Nicholas, R.; Nielsen, A.S.; Nikfekr, E.; Nocentini, U.; Nohara, C.; Nomura, K.; Odinak, M.M.; Olsson, T.; van Oosten, B.W.; Oreja-Guevara, C.; Oschmann, P.; Overell, J.; Pachner, A.; Panczel, G.; Pandolfo, M.; Papeix, C.; Patrucco, L.; Pelletier, J.; Piedrabuena, R.; Pless, M.; Polzer, U.; Pozsegovits, K.; Rastenyte, D.; Rauer, S.; Reifschneider, G.; Rey, R.; Rizvi, S.A.; Robertson, D.; Rodriguez, J.M.; Rog, D.; Roshanisefat, H.; Rowe, V.; Rozsa, C.; Rubin, S.; Rusek, S.; Saccà, F.; Saida, T.; Salgado, A.V.; Sanchez, V.E.F.; Sanders, K.; Satori, M.; Sazonov, D.V.; Scarpini, E.A.; Schlegel, E.; Schluep, M.; Schmidt, S.; Scholz, E.; Schrijver, H.M.; Schwab, M.; Schwartz, R.; Scott, J.; Selmaj, K.; Shafer, S.; Sharrack, B.; Shchukin, I.A.; Shimizu, Y.; Shotekov, P.; Siever, A.; Sigel, K-O.; Silliman, S.; Simo, M.; Simu, M.; Sinay, V.; Siquier, A.E.; Siva, A.; Skoda, O.; Solomon, A.; Stangel, M.; Stefoski, D.; Steingo, B.; Stolyarov, I.D.; Stourac, P.; Strassburger-Krogias, K.; Strauss, E.; Stuve, O.; Tarnev, I.; Tavernarakis, A.; Tello, C.R.; Terzi, M.; Ticha, V.; Ticmeanu, M.; Tiel-Wilck, K.; Toomsoo, T.; Tubridy, N.; Tullman, M.J.; Tumani, H.; Turcani, P.; Turner, B.; Uccelli, A.; Urtaza, F.J.O.; Vachova, M.; Valikovics, A.; Walter, S.; Van Wijmeersch, B.; Vanopdenbosch, L.; Weber, J.R.; Weiss, S.; Weissert, R.; Vermersch, P.; West, T.; Wiendl, H.; Wiertlewski, S.; Wildemann, B.; Willekens, B.; Visser, L.H.; Vorobeychik, G.; Xu, X.; Yamamura, T.; Yang, Y.N.; Yelamos, S.M.; Yeung, M.; Zacharias, A.; Zelkowitz, M.; Zettl, U.; Zhang, M.; Zhou, H.; Zieman, U.; Ziemssen, T. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet, 2018, 391(10127), 1263-1273. doi: 10.1016/S0140-6736(18)30475-6 PMID: 29576505
- Lassiter, G.; Melancon, C.; Rooney, T.; Murat, A.M.; Kaye, J.S.; Kaye, A.M.; Kaye, R.J.; Cornett, E.M.; Kaye, A.D.; Shah, R.J.; Viswanath, O.; Urits, I. Ozanimod to treat relapsing forms of multiple sclerosis: A comprehensive review of disease, drug efficacy and side effects. Neurol. Int., 2020, 12(3), 89-108. doi: 10.3390/neurolint12030016 PMID: 33287177
- Scott, F.L.; Clemons, B.; Brooks, J.; Brahmachary, E.; Powell, R.; Dedman, H.; Desale, H.G.; Timony, G.A.; Martinborough, E.; Rosen, H.; Roberts, E.; Boehm, M.F.; Peach, R.J. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol., 2016, 173(11), 1778-1792. doi: 10.1111/bph.13476 PMID: 26990079
- Tran, J.Q.; Hartung, J.P.; Peach, R.J.; Boehm, M.F.; Rosen, H.; Smith, H.; Brooks, J.L.; Timony, G.A.; Olson, A.D.; Gujrathi, S.; Frohna, P.A. Results from the firstinhuman study with ozanimod, a Novel, selective sphingosine-1-phosphate receptor modulator. J. Clin. Pharmacol., 2017, 57(8), 988-996. doi: 10.1002/jcph.887 PMID: 28398597
- Lamb, Y.N. Ozanimod: First Approval. Drugs, 2020, 80(8), 841-848. doi: 10.1007/s40265-020-01319-7 PMID: 32385738
- EMA Zeposia. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/zeposia
- Celgene a phase 2/3, multi-center, randomized, double-blind, placebo-controlled (Part A) and double-blind, double-dummy, active-controlled (Part B), parallel group study to evaluate the efficacy and safety of RPC1063 administered orally to relapsing multiple sclerosis patients; clinicaltrials.gov. 2021.
- Celgene a phase 3, multi-center, randomized, double-blind, double-dummy, active controlled, parallel group study to evaluate the efficacy and safety of RPC1063 administered orally to relapsing multiple sclerosis patients; clinicaltrials.gov. NCT01628393, 2020.
- Cohen, J.A.; Comi, G.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; Sheffield, J.K.; Minton, N.; Raghupathi, K.; Huang, V.; Kappos, L. Safety and efficacy of ozanimod versus interferon beta1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol., 2019, 18(11), 1021-1033. doi: 10.1016/S1474-4422(19)30238-8 PMID: 31492652
- Cohen, J.A.; Comi, G.; Arnold, D.L.; Bar-Or, A.; Selmaj, K.W.; Steinman, L.; Havrdová, E.K.; Cree, B.A.C.; Montalbán, X.; Hartung, H.P.; Huang, V.; Frohna, P.; Skolnick, B.E.; Kappos, L. Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Mult. Scler., 2019, 25(9), 1255-1262. doi: 10.1177/1352458518789884 PMID: 30043658
- Comi, G.; Kappos, L.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; Sheffield, J.K.; Minton, N.; Raghupathi, K.; Ding, N.; Cohen, J.A. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM) : A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol., 2019, 18(11), 1009-1020. doi: 10.1016/S1474-4422(19)30239-X PMID: 31492651
- Baldin, E.; Lugaresi, A. Ponesimod for the treatment of relapsing multiple sclerosis. Expert Opin. Pharmacother., 2020, 21(16), 1955-1964. doi: 10.1080/14656566.2020.1799977 PMID: 32808832
- DAmbrosio, D.; Steinmann, J.; Brossard, P.; Dingemanse, J. Differential effects of ponesimod, a selective S1P 1 receptor modulator, on blood-circulating human T cell subpopulations. Immunopharmacol. Immunotoxicol., 2015, 37(1), 103-109. doi: 10.3109/08923973.2014.993084 PMID: 25519470
- EMA Ponvory. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/ponvory
- Markham, A. Ponesimod: First approval. Drugs, 2021, 81(8), 957-962. doi: 10.1007/s40265-021-01523-z PMID: 33939119
- Olsson, T.; Boster, A.; Fernández, O.; Freedman, M.S.; Pozzilli, C.; Bach, D.; Berkani, O.; Mueller, M.S.; Sidorenko, T.; Radue, E.W.; Melanson, M. Oral ponesimod in relapsingremitting multiple sclerosis: A randomised phase II trial. J. Neurol. Neurosurg. Psychiatry., 2014, 85(11), 1198-1208. doi: 10.1136/jnnp-2013-307282 PMID: 24659797
- Actelion multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-finding study to evaluate the efficacy, safety, and tolerability of three doses of ACT-128800, an oral s1p1 receptor agonist, administered for twenty-four weeks in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT01006265, 2022.
- Kappos, L.; Fox, R.J.; Burcklen, M.; Freedman, M.S.; Havrdová, E.K.; Hennessy, B.; Hohlfeld, R.; Lublin, F.; Montalban, X.; Pozzilli, C.; Scherz, T.; DAmbrosio, D.; Linscheid, P.; Vaclavkova, A.; Pirozek-Lawniczek, M.; Kracker, H.; Sprenger, T. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 optimum study. JAMA Neurol., 2021, 78(5), 558-567. doi: 10.1001/jamaneurol.2021.0405 PMID: 33779698
- Actelion multicenter, randomized, double-blind, parallel-group, active-controlled, superiority study to compare the efficacy and safety of ponesimod to teriflunomide in subjects with relapsing multiple sclerosis; clinicaltrials.gov. NCT02425644, 2023.
- Stüve, O.; Bennett, J.L. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS Drug Rev., 2007, 13(1), 79-95. doi: 10.1111/j.1527-3458.2007.00003.x PMID: 17461891
- Sheremata, W.A.; Minagar, A.; Alexander, J.S.; Vollmer, T. The role of alpha-4 integrin in the aetiology of multiple sclerosis: Current knowledge and therapeutic implications. CNS Drugs, 2005, 19(11), 909-922. doi: 10.2165/00023210-200519110-00002 PMID: 16268663
- Biogen a randomized, double-blind, placebo-controlled, parallel-group, multicenter study to determine the safety and efficacy of natalizumab in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT01440101, 2017.
- Polman, C.H.; OConnor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; Toal, M.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. A randomized, placebocontrolled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 354(9), 899-910. doi: 10.1056/NEJMoa044397 PMID: 16510744
- Miller, D.H.; Soon, D.; Fernando, K.T.; MacManus, D.G.; Barker, G.J.; Yousry, T.A.; Fisher, E.; OConnor, P.W.; Phillips, J.T.; Polman, C.H.; Kappos, L.; Hutchinson, M.; Havrdova, E.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; Rudick, R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology, 2007, 68(17), 1390-1401. doi: 10.1212/01.wnl.0000260064.77700.fd PMID: 17452584
- Biogen a randomized, double-blind, placebo-controlled, parallel-group, multicenter study to determine the safety and efficacy of natalizumab, when added to avonex® (Interferon Beta-1a), in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00030966, 2009.
- Rudick, R.A.; Stuart, W.H.; Calabresi, P.A.; Confavreux, C.; Galetta, S.L.; Radue, E.W.; Lublin, F.D.; Weinstock-Guttman, B.; Wynn, D.R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 354(9), 911-923. doi: 10.1056/NEJMoa044396 PMID: 16510745
- EMA Tysabri Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/tysabri
- Clerico, M.; Artusi, C.A.; Di Liberto, A.; Rolla, S.; Bardina, V.; Barbero, P.; De Mercanti, S.F.; Durelli, L. Long-term safety evaluation of natalizumab for the treatment of multiple sclerosis. Expert Opin. Drug Saf., 2017, 16(8), 963-972. doi: 10.1080/14740338.2017.1346082 PMID: 28641055
- Major, E.O.; Yousry, T.A.; Clifford, D.B. Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: A decade of lessons learned. Lancet Neurol., 2018, 17(5), 467-480. doi: 10.1016/S1474-4422(18)30040-1 PMID: 29656742
- Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S. Alemtuzumab in multiple sclerosis: Mechanism of action and beyond. Int. J. Mol. Sci., 2015, 16(7), 16414-16439. doi: 10.3390/ijms160716414 PMID: 26204829
- Hale, G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy, 2001, 3(3), 137-143. doi: 10.1080/146532401753174098 PMID: 12171721
- Ginaldi, L.; De Martinis, M.; Matutes, E.; Farahat, N.; Morilla, R.; Dyer, M.J.S.; Catovsky, D. Levels of expression of CD52 in normal and leukemic B and T cells : Correlation with in vivo therapeutic responses to Campath-1H. Leuk. Res., 1998, 22(2), 185-191. doi: 10.1016/S0145-2126(97)00158-6 PMID: 9593475
- Gribben, J.G.; Hallek, M. Rediscovering alemtuzumab: Current and emerging therapeutic roles. Br. J. Haematol., 2009, 144(6), 818-831. doi: 10.1111/j.1365-2141.2008.07557.x PMID: 19183194
- Alireza, M.; J Steven, A.; Mohammad Ali, S.; Robert, Z. Alemtuzumab and multiple sclerosis: Therapeutic application. Expert Opin. Biol. Ther., 2010, 10(3), 421-429. doi: 10.1517/14712591003586806 PMID: 20095876
- Watanabe, T.; Masuyama, J.; Sohma, Y.; Inazawa, H.; Horie, K.; Kojima, K.; Uemura, Y.; Aoki, Y.; Kaga, S.; Minota, S.; Tanaka, T.; Yamaguchi, Y.; Kobayashi, T.; Serizawa, I. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin. Immunol., 2006, 120(3), 247-259. doi: 10.1016/j.clim.2006.05.006 PMID: 16797237
- Rao, S.P.; Sancho, J.; Campos-Rivera, J.; Boutin, P.M.; Severy, P.B.; Weeden, T.; Shankara, S.; Roberts, B.L.; Kaplan, J.M. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One, 2012, 7(6), e39416. doi: 10.1371/journal.pone.0039416 PMID: 22761788
- EMA Lemtrada Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/lemtrada
- Genzyme, a sanofi company a phase II, randomized, open-label, three-arm study comparing low- and high-dose alemtuzumab and high-dose subcutaneous interferon beta-1a (Rebif®) in patients with early, active relapsing-remitting multiple sclerosis; clinicaltrials.go. NCT00050778, 2015.
- CAMMS223 Trial Investigators. Alemtuzumab vs. Interferon Beta-1a in early multiple sclerosis. N. Engl. J. Med., 2008, 359(17), 1786-1801. doi: 10.1056/NEJMoa0802670
- Coles, A.J.; Fox, E.; Vladic, A.; Gazda, S.K.; Brinar, V.; Selmaj, K.W.; Skoromets, A.; Stolyarov, I.; Bass, A.; Sullivan, H.; Margolin, D.H.; Lake, S.L.; Moran, S.; Palmer, J.; Smith, M.S.; Compston, D.A.S. Alemtuzumab more effective than interferon -1a at 5-year follow-up of CAMMS223 clinical Trial. Neurology, 2012, 78(14), 1069-1078. doi: 10.1212/WNL.0b013e31824e8ee7 PMID: 22442431
- Genzyme, a sanofi company a phase 3 randomized, rater-blinded study comparing two annual cycles of intravenous alemtuzumab to three-times weekly subcutaneous interferon Beta-1a (Rebif®) in treatment-naïve patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00530348, 2014.
- Genzyme, a sanofi company a phase 3, randomized, rater- and dose-blinded study comparing two annual cycles of intravenous low- and high-dose alemtuzumab to three-times weekly subcutaneous interferon beta 1a (Rebif®) in patients with relapsing remitting multiple sclerosis who have relapsed on therapy; clinicaltrials.gov. NCT00548405, 2017.
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; Brinar, V.V.; Giovannoni, G.; Stojanovic, M.; Ertik, B.I.; Lake, S.L.; Margolin, D.H.; Panzara, M.A.; Compston, D.A.S. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet, 2012, 380(9856), 1819-1828. doi: 10.1016/S0140-6736(12)61769-3 PMID: 23122652
- Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Miller, T.; Fisher, E.; Sandbrink, R.; Lake, S.L.; Margolin, D.H.; Oyuela, P.; Panzara, M.A.; Compston, D.A.S. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet, 2012, 380(9856), 1829-1839. doi: 10.1016/S0140-6736(12)61768-1 PMID: 23122650
- EMA MabThera. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/mabthera
- Genentech, Inc.. Genentech, inc. a phase ii, randomized, double-blind, parallel-group, placebo-controlled, multicenter study to evaluate the safety and efficacy of rituximab (Mabthera/Rituxan) in adults with relapsing remitting multiple sclerosis; clinicaltrials.gov. NCT00097188, 2014.
- Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; Langer-Gould, A.; Smith, C.H. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med., 2008, 358(7), 676-688. doi: 10.1056/NEJMoa0706383 PMID: 18272891
- A Study to Evaluate the Safety and Efficacy of Rituximab in Adults With Primary Progressive Multiple Sclerosis (OLYMPUS), Available at: https://clinicaltrials.gov/study/NCT00087529
- Hawker, K.; OConnor, P.; Freedman, M.S.; Calabresi, P.A.; Antel, J.; Simon, J.; Hauser, S.; Waubant, E.; Vollmer, T.; Panitch, H.; Zhang, J.; Chin, P.; Smith, C.H. Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol., 2009, 66(4), 460-471. doi: 10.1002/ana.21867 PMID: 19847908
- Sorensen, P.S.; Blinkenberg, M. The potential role for ocrelizumab in the treatment of multiple sclerosis: Current evidence and future prospects. Ther. Adv. Neurol. Disord., 2016, 9(1), 44-52. doi: 10.1177/1756285615601933 PMID: 26788130
- Genovese, M.C.; Kaine, J.L.; Lowenstein, M.B.; Giudice, J.D.; Baldassare, A.; Schechtman, J.; Fudman, E.; Kohen, M.; Gujrathi, S.; Trapp, R.G.; Sweiss, N.J.; Spaniolo, G.; Dummer, W. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum., 2008, 58(9), 2652-2661. doi: 10.1002/art.23732 PMID: 18759293
- Kausar, F.; Mustafa, K.; Sweis, G.; Sawaqed, R.; Alawneh, K.; Salloum, R.; Badaracco, M.; Niewold, T.B.; Sweiss, N.J. Ocrelizumab: A step forward in the evolution of B-cell therapy. Expert Opin. Biol. Ther., 2009, 9(7), 889-895. doi: 10.1517/14712590903018837 PMID: 19463076
- Morschhauser, F.; Marlton, P.; Vitolo, U.; Lindén, O.; Seymour, J.F.; Crump, M.; Coiffier, B.; Foà, R.; Wassner, E.; Burger, H.U.; Brennan, B.; Mendila, M. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann. Oncol., 2010, 21(9), 1870-1876. doi: 10.1093/annonc/mdq027 PMID: 20157180
- Li, R.; Patterson, K.R.; Bar-Or, A.; Reassessing, B. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol., 2018, 19(7), 696-707. doi: 10.1038/s41590-018-0135-x PMID: 29925992
- Sabatino, J.J., Jr; Pröbstel, A.K.; Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci., 2019, 20(12), 728-745. doi: 10.1038/s41583-019-0233-2 PMID: 31712781
- Hoffmann-La Roche. Hoffmann-la roche a randomized, double-blind, double-dummy, parallel-group study to evaluate the efficacy and safety of ocrelizumab in comparison to interferon beta-1a (Rebif®) in patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT01412333, 2022.
- Hoffmann-La Roche. A Randomized, double-blind, double-dummy, parallel-group study to evaluate the efficacy and safety of ocrelizumab in comparison to interferon beta-1a (Rebif) in patients with relapsing multiple sclerosis; clinicaltrials.gov NCT01412333, 2022.
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Wolinsky, J.S.; Arnold, D.L.; Klingelschmitt, G.; Masterman, D.; Fontoura, P.; Belachew, S.; Chin, P.; Mairon, N.; Garren, H.; Kappos, L. Ocrelizumab versus Interferon Beta-1a in relapsing multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 221-234. doi: 10.1056/NEJMoa1601277 PMID: 28002679
- Hoffmann-La Roche. A Phase III, Multicentre, Randomized, Parallel-Group, Double-Blind, Placebo Controlled Study to Evaluate the Efficacy and Safety of Ocrelizumab in Adults With Primary Progressive Multiple Sclerosis; clinicaltrials.gov NCT01194570, 2022.
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Sauter, A.; Masterman, D.; Fontoura, P.; Belachew, S.; Garren, H.; Mairon, N.; Chin, P.; Wolinsky, J.S. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 209-220. doi: 10.1056/NEJMoa1606468 PMID: 28002688
- EMA Ocrevus Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/ocrevus
- Hoffmann-La Roche. Hoffmann-la roche an open-label, single-arm study to evaluate the effectiveness and safety of ocrelizumab in patients with early stage relapsing remitting multiple sclerosis; clinicaltrials.gov. NCT03085810, 2022.
- Hartung, H-P.; Berger, T.; Bermel, R.A.; Brochet, B.; Carroll, W.M.; Holmøy, T.; Karabudak, R.; Killestein, J.; Nos, C.; Patti, F.; Ross, A.P.; Vanopdenbosch, L.; Vollmer, T.; Buffels, R.; Garas, M.; Kadner, K.; Manfrini, M.; Wang, Q.; Freedman, M.S. Shorter infusion time of ocrelizumab: Results from the randomized, double-blind ensemble plus substudy in patients with relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord., 2020, 46, 102492. doi: 10.1016/j.msard.2020.102492 PMID: 33039944
- Hauser, S.L.; Cross, A.H.; Winthrop, K.; Wiendl, H.; Nicholas, J.; Meuth, S.G.; Giacomini, P.S.; Saccà, F.; Mancione, L.; Zielman, R.; Bagger, M.; Gupta, A.D.; Häring, D.A.; Jehl, V.; Kieseier, B.C.; Pingili, R.; Stoneman, D.; Su, W.; Willi, R.; Kappos, L. Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Mult Scler, 2022, 28(10), 1576-1590. doi: 10.1177/13524585221079731 PMID: 35229668
- Sorensen, P.S.; Lisby, S.; Grove, R.; Derosier, F.; Shackelford, S.; Havrdova, E.; Drulovic, J.; Filippi, M. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: A phase 2 study. Neurology, 2014, 82(7), 573-581. doi: 10.1212/WNL.0000000000000125 PMID: 24453078
- EMA Kesimpta. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/kesimpta
- Novartis Pharmaceuticals. A randomized, double-blind, doubledummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis; clinicaltrials.gov NCT02792218, 2021.
- Novartis Pharmaceuticals. A Randomized, double-blind, doubledummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis.; clinicaltrials.gov. NCT02792231, 2021.
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; Selmaj, K.; Wiendl, H.; Kerloeguen, C.; Willi, R.; Li, B.; Kakarieka, A.; Tomic, D.; Goodyear, A.; Pingili, R.; Häring, D.A.; Ramanathan, K.; Merschhemke, M.; Kappos, L. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med., 2020, 383(6), 546-557. doi: 10.1056/NEJMoa1917246 PMID: 32757523
- Kang, C.; Blair, H.A. Ofatumumab: A review in relapsing forms of multiple sclerosis. Drugs, 2022, 82(1), 55-62. doi: 10.1007/s40265-021-01650-7 PMID: 34897575
- Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; Lankester, A.C.; Mohty, M.; Neven, B.; de Latour, R.P.; Pedrazzoli, P.; Peric, Z.; Yakoub-Agha, I.; Sureda, A.; Kröger, N. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant., 2022, 57(8), 1217-1239. doi: 10.1038/s41409-022-01691-w PMID: 35589997
- Sharrack, B.; Saccardi, R.; Alexander, T.; Badoglio, M.; Burman, J.; Farge, D.; Greco, R.; Jessop, H.; Kazmi, M.; Kirgizov, K.; Labopin, M.; Mancardi, G.; Martin, R.; Moore, J.; Muraro, P.A.; Rovira, M.; Sormani, M.P.; Snowden, J.A. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: Updated guidelines and recommendations from the EBMT autoimmune diseases working party (ADWP) and the joint accreditation committee of EBMT and ISCT (JACIE). Bone Marrow Transplant., 2020, 55(2), 283-306. doi: 10.1038/s41409-019-0684-0 PMID: 31558790
- Muraro, P.A.; Martin, R.; Mancardi, G.L.; Nicholas, R.; Sormani, M.P.; Saccardi, R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol., 2017, 13(7), 391-405. doi: 10.1038/nrneurol.2017.81 PMID: 28621766
- Cencioni, M.T.; Genchi, A.; Brittain, G.; de Silva, T.I.; Sharrack, B.; Snowden, J.A.; Alexander, T.; Greco, R.; Muraro, P.A. Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis: A review on behalf of the EBMT autoimmune diseases working party. Front. Immunol., 2022, 12, 813957. doi: 10.3389/fimmu.2021.813957 PMID: 35178046
- Mariottini, A.; De Matteis, E.; Muraro, P.A. Haematopoietic stem cell transplantation for multiple sclerosis: Current status. BioDrugs, 2020, 34(3), 307-325. doi: 10.1007/s40259-020-00414-1 PMID: 32166703
- Larsson, D.; Åkerfeldt, T.; Carlson, K.; Burman, J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler., 2020, 26(11), 1351-1359. doi: 10.1177/1352458519863983 PMID: 31347948
- Tolf, A.; Fagius, J.; Carlson, K.; Åkerfeldt, T.; Granberg, T.; Larsson, E.M.; Burman, J. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol. Scand., 2019, 140(5), 320-327. doi: 10.1111/ane.13147 PMID: 31297793
- Burt, R.K.; Muraro, P.A.; Farge, D.; Oliveira, M.C.; Snowden, J.A.; Saccardi, R.; Han, X.; Quigley, K.; Bueno, V.; Frasca, D.; Fedorenko, D.; Burman, J. New autoimmune diseases after autologous hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplant., 2021, 56(7), 1509-1517. doi: 10.1038/s41409-021-01277-y PMID: 33911200
- Daikeler, T.; Labopin, M.; Di Gioia, M.; Abinun, M.; Alexander, T.; Miniati, I.; Gualandi, F.; Fassas, A.; Martin, T.; Schwarze, C.P.; Wulffraat, N.; Buch, M.; Sampol, A.; Carreras, E.; Dubois, B.; Gruhn, B.; Güngör, T.; Pohlreich, D.; Schuerwegh, A.; Snarski, E.; Snowden, J.; Veys, P.; Fasth, A.; Lenhoff, S.; Messina, C.; Voswinkel, J.; Badoglio, M.; Henes, J.; Launay, D.; Tyndall, A.; Gluckman, E.; Farge, D. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: A retrospective study of the EBMT autoimmune disease working party. Blood, 2011, 118(6), 1693-1698. doi: 10.1182/blood-2011-02-336156 PMID: 21596847
- Snarski, E.; Snowden, J.A.; Oliveira, M.C.; Simoes, B.; Badoglio, M.; Carlson, K.; Burman, J.; Moore, J.; Rovira, M.; Clark, R.E.; Saiz, A.; Hadj-Khelifa, S.; Tan, J.; Crescimanno, A.; Musso, M.; Martin, T.; Farge, D. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: A retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplant., 2015, 50(2), 216-220. doi: 10.1038/bmt.2014.248 PMID: 25387098
- Massarotti, C.; Sbragia, E.; Boffa, G.; Vercelli, C.; Zimatore, G.B.; Cottone, S.; Frau, J.; Raiola, A.; Varaldo, R.; Mancardi, G.; Inglese, M.; Anserini, P. Menstrual cycle resumption and female fertility after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler., 2021, 27(13), 2103-2107. doi: 10.1177/13524585211000616 PMID: 33709839
- Muraro, P.A.; Pasquini, M.; Atkins, H.L.; Bowen, J.D.; Farge, D.; Fassas, A.; Freedman, M.S.; Georges, G.E.; Gualandi, F.; Hamerschlak, N.; Havrdova, E.; Kimiskidis, V.K.; Kozak, T.; Mancardi, G.L.; Massacesi, L.; Moraes, D.A.; Nash, R.A.; Pavletic, S.; Ouyang, J.; Rovira, M.; Saiz, A.; Simoes, B.; Trnený, M.; Zhu, L.; Badoglio, M.; Zhong, X.; Sormani, M.P.; Saccardi, R. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol., 2017, 74(4), 459-469. doi: 10.1001/jamaneurol.2016.5867 PMID: 28241268
- Atkins, H.L.; Bowman, M.; Allan, D.; Anstee, G.; Arnold, D.L.; Bar-Or, A.; Bence-Bruckler, I.; Birch, P.; Bredeson, C.; Chen, J.; Fergusson, D.; Halpenny, M.; Hamelin, L.; Huebsch, L.; Hutton, B.; Laneuville, P.; Lapierre, Y.; Lee, H.; Martin, L.; McDiarmid, S.; OConnor, P.; Ramsay, T.; Sabloff, M.; Walker, L.; Freedman, M.S. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: A multicentre single-group phase 2 trial. Lancet, 2016, 388(10044), 576-585. doi: 10.1016/S0140-6736(16)30169-6 PMID: 27291994
- Moore, J.J.; Massey, J.C.; Ford, C.D.; Khoo, M.L.; Zaunders, J.J.; Hendrawan, K.; Barnett, Y.; Barnett, M.H.; Kyle, K.A.; Zivadinov, R.; Ma, K.C.; Milliken, S.T.; Sutton, I.J.; Ma, D.D.F. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2019, 90(5), 514-521. doi: 10.1136/jnnp-2018-319446 PMID: 30538138
- Nash, R.A.; Hutton, G.J.; Racke, M.K.; Popat, U.; Devine, S.M.; Steinmiller, K.C.; Griffith, L.M.; Muraro, P.A.; Openshaw, H.; Sayre, P.H.; Stuve, O.; Arnold, D.L.; Wener, M.H.; Georges, G.E.; Wundes, A.; Kraft, G.H.; Bowen, J.D. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology, 2017, 88(9), 842-852. doi: 10.1212/WNL.0000000000003660 PMID: 28148635
- Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: The swedish experience cochrane library Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01771281/full
- Burt, R.K.; Balabanov, R.; Han, X.; Sharrack, B.; Morgan, A.; Quigley, K.; Yaung, K.; Helenowski, I.B.; Jovanovic, B.; Spahovic, D.; Arnautovic, I.; Lee, D.C.; Benefield, B.C.; Futterer, S.; Oliveira, M.C.; Burman, J. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA, 2015, 313(3), 275-284. doi: 10.1001/jama.2014.17986 PMID: 25602998
- Lee, H.; Nakamura, K.; Narayanan, S.; Brown, R.; Chen, J.; Atkins, H.L.; Freedman, M.S.; Arnold, D.L. Impact of immunoablation and autologous hematopoietic stem cell transplantation on gray and white matter atrophy in multiple sclerosis. Mult. Scler., 2018, 24(8), 1055-1066. doi: 10.1177/1352458517715811 PMID: 28617152
- Mariottini, A.; Filippini, S.; Innocenti, C.; Forci, B.; Mechi, C.; Barilaro, A.; Fani, A.; Carlucci, G.; Saccardi, R.; Massacesi, L.; Repice, A.M. Impact of autologous haematopoietic stem cell transplantation on disability and brain atrophy in secondary progressive multiple sclerosis. Mult. Scler., 2021, 27(1), 61-70. doi: 10.1177/1352458520902392 PMID: 32008439
- Burt, R.K.; Balabanov, R.; Burman, J.; Sharrack, B.; Snowden, J.A.; Oliveira, M.C.; Fagius, J.; Rose, J.; Nelson, F.; Barreira, A.A.; Carlson, K.; Han, X.; Moraes, D.; Morgan, A.; Quigley, K.; Yaung, K.; Buckley, R.; Alldredge, C.; Clendenan, A.; Calvario, M.A.; Henry, J.; Jovanovic, B.; Helenowski, I.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA, 2019, 321(2), 165-174. doi: 10.1001/jama.2018.18743 PMID: 30644983
- Burt, R.K.; Han, X.; Quigley, K.; Helenowski, I.B.; Balabanov, R. Real-world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J. Neurol., 2022, 269(5), 2513-2526. doi: 10.1007/s00415-021-10820-2 PMID: 34633525
- Cohen, J.A.; Baldassari, L.E.; Atkins, H.L.; Bowen, J.D.; Bredeson, C.; Carpenter, P.A.; Corboy, J.R.; Freedman, M.S.; Griffith, L.M.; Lowsky, R.; Majhail, N.S.; Muraro, P.A.; Nash, R.A.; Pasquini, M.C.; Sarantopoulos, S.; Savani, B.N.; Storek, J.; Sullivan, K.M.; Georges, G.E. Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: Position statement from the American society for blood and marrow transplantation. Biol. Blood Marrow Transplant., 2019, 25(5), 845-854. doi: 10.1016/j.bbmt.2019.02.014 PMID: 30794930
- Kim, Y.H.; Choi, B.K.; Oh, H.S.; Kang, W.J.; Mittler, R.S.; Kwon, B.S. Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol. Cancer Ther., 2009, 8(2), 469-478. doi: 10.1158/1535-7163.MCT-08-0993 PMID: 19190115
- Awad, A.; Stüve, O. Review: Cyclophosphamide in multiple sclerosis: Scientific rationale, history and novel treatment paradigms. Ther. Adv. Neurol. Disord., 2009, 2(6), 357-368. doi: 10.1177/1756285609344375 PMID: 21180630
- Juma, F.D.; Rogers, H.J.; Trounce, J.R. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br. J. Clin. Pharmacol., 1979, 8(3), 209-217. doi: 10.1111/j.1365-2125.1979.tb01004.x PMID: 497087
- Bahr, U.; Schulten, H.R.; Hommes, O.R.; Aerts, F. Determination of cyclophosphamide in urine, serum and cerebrospinal fluid of multiple sclerosis patients by field desorption mass spectrometry. Clin. Chim. Acta, 1980, 103(2), 183-192. doi: 10.1016/0009-8981(80)90212-0 PMID: 7371197
- Egorin, M.J.; Kaplan, R.S.; Salcman, M.; Aisner, J.; Colvin, M.; Wiernik, P.H.; Bachur, N.R. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin. Pharmacol. Ther., 1982, 32(1), 122-128. doi: 10.1038/clpt.1982.135 PMID: 7083726
- Farmaci con uso consolidato nel trattamento di patologie neurologiche per indicazioni anche differenti da quelle previste dal provvedimento di autorizzazione allimmissione in commercio. 2021. Available at: Https://Www.Aifa.Gov
- Aimard, G.; Girard, P.F.; Raveau, J. Multiple sclerosis and the autoimmunization process. Treatment by antimitotics. Lyon Med., 1966, 215(6), 345-352. PMID: 5906182
- Brochet, B.; Deloire, M.S.A.; Perez, P.; Loock, T.; Baschet, L.; Debouverie, M.; Pittion, S.; Ouallet, J.C.; Clavelou, P.; de Sèze, J.; Collongues, N.; Vermersch, P.; Zéphir, H.; Castelnovo, G.; Labauge, P.; Lebrun, C.; Cohen, M.; Ruet, A. Double-blind controlled randomized trial of cyclophosphamide versus methylprednisolone in secondary progressive multiple sclerosis. PLoS One, 2017, 12(1), e0168834. doi: 10.1371/journal.pone.0168834 PMID: 28045953
- Zephir, H.; de Seze, J.; Duhamel, A.; Debouverie, M.; Hautecoeur, P.; Lebrun, C.; Malikova, I.; Pelletier, J.; Sénéchal, O.; Vermersch, P. Treatment of progressive forms of multiple sclerosis by cyclophosphamide: A cohort study of 490 patients. J. Neurol. Sci., 2004, 218(1-2), 73-77. doi: 10.1016/j.jns.2003.11.004 PMID: 14759636
- Ab, B.; Ut, B.; M, T. Long-term remissions with use of high dose cyclophosphamide in multiple sclerosis. J. Mult. Scler., 2016, 3(4) doi: 10.4172/2376-0389.1000185
- The Canadian Cooperative Multiple Sclerosis Study Group. The canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. Lancet, 1991, 337(8739), 441-446. doi: 10.1016/0140-6736(91)93389-Q PMID: 1671468
- Perini, P.; Calabrese, M.; Tiberio, M.; Ranzato, F.; Battistin, L.; Gallo, P. Mitoxantrone versus cyclophosphamide in secondary-progressive multiple sclerosis. J. Neurol., 2006, 253(8), 1034-1040. doi: 10.1007/s00415-006-0154-7 PMID: 16609811
- Hartung, H.P.; Gonsette, R.; König, N.; Kwiecinski, H.; Guseo, A.; Morrissey, S.P.; Krapf, H.; Zwingers, T. Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet, 2002, 360(9350), 2018-2025. doi: 10.1016/S0140-6736(02)12023-X PMID: 12504397
- Gómez-Figueroa, E.; Gutierrez-Lanz, E.; Alvarado-Bolaños, A.; Casallas-Vanegas, A.; Garcia-Estrada, C.; Zabala-Angeles, I.; Cadena-Fernandez, A.; Veronica, R.A.; Irene, T.F.; Flores-Rivera, J. Cyclophosphamide treatment in active multiple sclerosis. Neurol. Sci., 2021, 42(9), 3775-3780. doi: 10.1007/s10072-021-05052-1 PMID: 33452657
- Rotstein, D.; Montalban, X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat. Rev. Neurol., 2019, 15(5), 287-300. doi: 10.1038/s41582-019-0170-8 PMID: 30940920
- Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; Hartung, H.P.; Havrdova, E.; Hemmer, B.; Kappos, L.; Liblau, R.; Lubetzki, C.; Marcus, E.; Miller, D.H.; Olsson, T.; Pilling, S.; Selmaj, K.; Siva, A.; Sorensen, P.S.; Sormani, M.P.; Thalheim, C.; Wiendl, H.; Zipp, F. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler., 2018, 24(2), 96-120. doi: 10.1177/1352458517751049 PMID: 29353550
- Rae-Grant, A.; Day, G.S.; Marrie, R.A.; Rabinstein, A.; Cree, B.A.C.; Gronseth, G.S.; Haboubi, M.; Halper, J.; Hosey, J.P.; Jones, D.E.; Lisak, R.; Pelletier, D.; Potrebic, S.; Sitcov, C.; Sommers, R.; Stachowiak, J.; Getchius, T.S.D.; Merillat, S.A.; Pringsheim, T. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology, 2018, 90(17), 777-788. doi: 10.1212/WNL.0000000000005347 PMID: 29686116
- Prosperini, L.; Mancinelli, C.R.; Solaro, C.M.; Nociti, V.; Haggiag, S.; Cordioli, C.; De Giglio, L.; De Rossi, N.; Galgani, S.; Rasia, S.; Ruggieri, S.; Tortorella, C.; Capra, R.; Mirabella, M.; Gasperini, C. Induction versus escalation in multiple sclerosis: A 10-year real world study. Neurotherapeutics, 2020, 17(3), 994-1004. doi: 10.1007/s13311-020-00847-0 PMID: 32236822
- Weideman, A.M.; Tapia-Maltos, M.A.; Johnson, K.; Greenwood, M.; Bielekova, B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol., 2017, 8, 577. doi: 10.3389/fneur.2017.00577 PMID: 29176956
- Ms, F. Managing multiple sclerosis: Treatment initiation, modification, and sequencing. Can J Neurol Sci, 2018, 45(5), 489-503. doi: 10.1017/cjn.2018.17
- Freeman, L.; Longbrake, E.E.; Coyle, P.K.; Hendin, B.; Vollmer, T. High-efficacy therapies for treatment-naïve individuals with relapsingremitting multiple sclerosis. CNS Drugs, 2022, 36(12), 1285-1299. doi: 10.1007/s40263-022-00965-7 PMID: 36350491
- Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; Tallantyre, E. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol., 2019, 76(5), 536-541. doi: 10.1001/jamaneurol.2018.4905 PMID: 30776055
- Pipek, L.Z.; Mahler, J.V.; Nascimento, R.F.V.; Apóstolos-Pereira, S.L.; Silva, G.D.; Callegaro, D. Cost, efficacy, and safety comparison between early intensive and escalating strategies for multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord., 2023, 71, 104581. doi: 10.1016/j.msard.2023.104581 PMID: 36848839
- Iaffaldano, P.; Lucisano, G.; Caputo, F.; Paolicelli, D.; Patti, F.; Zaffaroni, M.; Brescia Morra, V.; Pozzilli, C.; De Luca, G.; Inglese, M.; Salemi, G.; Maniscalco, G.T.; Cocco, E.; Sola, P.; Lus, G.; Conte, A.; Amato, M.P.; Granella, F.; Gasperini, C.; Bellantonio, P.; Totaro, R.; Rovaris, M.; Salvetti, M.; Torri Clerici, V.L.A.; Bergamaschi, R.; Maimone, D.; Scarpini, E.; Capobianco, M.; Comi, G.; Filippi, M.; Trojano, M. Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Ther. Adv. Neurol. Disord., 2021, 14 doi: 10.1177/17562864211019574 PMID: 34104220
- Simpson, A.; Mowry, E.M.; Newsome, S.D. Early aggressive treatment approaches for multiple sclerosis. Curr. Treat. Options Neurol., 2021, 23(7), 19. doi: 10.1007/s11940-021-00677-1 PMID: 34025110
- Le Page, E.; Edan, G. Induction or escalation therapy for patients with multiple sclerosis? Rev. Neurol., 2018, 174(6), 449-457. doi: 10.1016/j.neurol.2018.04.004 PMID: 29799415
- Comi, G.; Radaelli, M.; Soelberg Sørensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet, 2017, 389(10076), 1347-1356. doi: 10.1016/S0140-6736(16)32388-1 PMID: 27889192
- Corboy, J.R.; Weinshenker, B.G.; Wingerchuk, D.M. Comment on 2018 American academy of neurology guidelines on disease-modifying therapies in MS. Neurology, 2018, 90(24), 1106-1112. doi: 10.1212/WNL.0000000000005574 PMID: 29685920
- Filippi, M.; Amato, M.P.; Centonze, D.; Gallo, P.; Gasperini, C.; Inglese, M.; Patti, F.; Pozzilli, C.; Preziosa, P.; Trojano, M. Early use of high-efficacy disease‑modifying therapies makes the difference in people with multiple sclerosis: An expert opinion. J. Neurol., 2022, 269(10), 5382-5394. doi: 10.1007/s00415-022-11193-w PMID: 35608658
- Linker, R.A.; Chan, A. Navigating choice in multiple sclerosis management. Neurol. Res. Pract., 2019, 1(1), 5. doi: 10.1186/s42466-019-0005-5 PMID: 33324871
- Zhang, T.; Tremlett, H.; Leung, S.; Zhu, F.; Kingwell, E.; Fisk, J.D.; Bhan, V.; Campbell, T.L.; Stadnyk, K.; Yu, B.N.; Marrie, R.A. Examining the effects of comorbidities on disease-modifying therapy use in multiple sclerosis. Neurology, 2016, 86(14), 1287-1295. doi: 10.1212/WNL.0000000000002543 PMID: 26944268
- Singer, B.A. Initiating oral fingolimod treatment in patients with multiple sclerosis. Ther. Adv. Neurol. Disord., 2013, 6(4), 269-275. doi: 10.1177/1756285613491520 PMID: 23858329
- Magyari, M.; Sorensen, P.S. Comorbidity in multiple sclerosis. Front. Neurol., 2020, 11, 851. doi: 10.3389/fneur.2020.00851 PMID: 32973654
- Dema, M.; Eixarch, H.; Villar, L.M.; Montalban, X.; Espejo, C. Immunosenescence in multiple sclerosis: The identification of new therapeutic targets. Autoimmun. Rev., 2021, 20(9), 102893. doi: 10.1016/j.autrev.2021.102893 PMID: 34237417
- Vaughn, C.B.; Jakimovski, D.; Kavak, K.S.; Ramanathan, M.; Benedict, R.H.B.; Zivadinov, R.; Weinstock-Guttman, B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat. Rev. Neurol., 2019, 15(6), 329-342. doi: 10.1038/s41582-019-0183-3 PMID: 31000816
- Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. N. Engl. J. Med., 1998, 339(5), 285-291. doi: 10.1056/NEJM199807303390501 PMID: 9682040
- Houtchens, M.K.; Kolb, C.M. Multiple sclerosis and pregnancy: Therapeutic considerations. J. Neurol., 2013, 260(5), 1202-1214. doi: 10.1007/s00415-012-6653-9 PMID: 22926165
- Voskuhl, R.; Momtazee, C. Pregnancy: Effect on multiple sclerosis, treatment considerations, and breastfeeding. Neurotherapeutics, 2017, 14(4), 974-984. doi: 10.1007/s13311-017-0562-7 PMID: 28766273
- Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler, 2019, 25(14) doi: 10.1177/1352458518814117
- Altokhis, A.I.; Hibbert, A.M.; Allen, C.M.; Mougin, O.; Alotaibi, A.; Lim, S.Y.; Constantinescu, C.S.; Abdel-Fahim, R.; Evangelou, N. Longitudinal clinical study of patients with iron rim lesions in multiple sclerosis. Mult. Scler., 2022, 28(14), 2202-2211. doi: 10.1177/13524585221114750 PMID: 36000485
- Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Höftberger, R.; Berger, T.; Auff, E.; Leutmezer, F.; Trattnig, S.; Lassmann, H.; Bagnato, F.; Hametner, S. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging. Acta Neuropathol., 2017, 133(1), 25-42. doi: 10.1007/s00401-016-1636-z PMID: 27796537
- Zhang, Y.; Gauthier, S.A.; Gupta, A.; Chen, W.; Comunale, J.; Chiang, G.C.Y.; Zhou, D.; Askin, G.; Zhu, W.; Pitt, D.; Wang, Y. Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: Myelin breakdown, myelin debris degradation and removal, and iron accumulation. AJNR Am. J. Neuroradiol., 2016, 37(9), 1629-1635. doi: 10.3174/ajnr.A4825 PMID: 27256856
- Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of chronic active multiple sclerosis lesions with disability In Vivo. JAMA Neurol., 2019, 76(12), 1474-1483. doi: 10.1001/jamaneurol.2019.2399 PMID: 31403674
- Calvi, A.; Carrasco, F.P.; Tur, C.; Chard, D.T.; Stutters, J.; De Angelis, F.; John, N.; Williams, T.; Doshi, A.; Samson, R.S.; MacManus, D.; Gandini Wheeler-Kingshott, C.A.; Ciccarelli, O.; Chataway, J.; Barkhof, F. Association of slowly expanding lesions on mri with disability in people with secondary progressive multiple sclerosis. Neurology, 2022, 98(17), e1783-e1793. doi: 10.1212/WNL.0000000000200144 PMID: 35277438
- Maggi, P.; Kuhle, J.; Schädelin, S.; van der Meer, F.; Weigel, M.; Galbusera, R.; Mathias, A.; Lu, P.J.; Rahmanzadeh, R.; Benkert, P.; La Rosa, F.; Bach Cuadra, M.; Sati, P.; Théaudin, M.; Pot, C.; van Pesch, V.; Leppert, D.; Stadelmann, C.; Kappos, L.; Du Pasquier, R.; Reich, D.S.; Absinta, M.; Granziera, C. Chronic white matter inflammation and serum neurofilament levels in multiple sclerosis. Neurology, 2021, 97(6), e543-e553. doi: 10.1212/WNL.0000000000012326 PMID: 34088875
- Elliott, C.; Belachew, S.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Fecker, J.; Model, F.; Wei, W.; Arnold, D.L. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain, 2019, 142(9), 2787-2799. doi: 10.1093/brain/awz212 PMID: 31497864
- Beynon, V.; George, I.C.; Elliott, C.; Arnold, D.L.; Ke, J.; Chen, H.; Zhu, L.; Ke, C.; Giovannoni, G.; Scaramozza, M.; Campbell, N.; Bradley, D.P.; Franchimont, N.; Gafson, A.; Belachew, S. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurology Open, 2022, 4(1), e000240. doi: 10.1136/bmjno-2021-000240 PMID: 35720980
- Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Kornek, B.; Kasprian, G.; Berger, T.; Leutmezer, F.; Rommer, P.S.; Trattnig, S.; Lassmann, H.; Hametner, S. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain, 2021, 144(3), 833-847. doi: 10.1093/brain/awaa436 PMID: 33484118
- Zhang, S.; Nguyen, T.D.; Hurtado Rúa, S.M.; Kaunzner, U.W.; Pandya, S.; Kovanlikaya, I.; Spincemaille, P.; Wang, Y.; Gauthier, S.A. Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions. AJNR Am. J. Neuroradiol., 2019, 40(6), 987-993. doi: 10.3174/ajnr.A6071 PMID: 31097429
- Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mare, M.; Khabirov, F.A.; Traboulsee, A.; GrandMaison, F.; Jacques, F.; Traboulsee, A.; Tyblova, M.; Meluzinova, E.; Ampapa, R.; Valis, M.; Hradilke, P.; Mare, M.; Stourac, P.; Gross-Paju, K.; Laplaud, D.; Mathey, G.; Uitdehaag, B.; Evdoshenkoo, E.; Popova, E.; Zakharova, M.; Totolyan, N.; Litvinenko, I.; Khabirov, F.; Sivertseva, S.; Hancinova, V.; Kantorova, E.; Gines, M.L.M.; Montalban, X.; Maduano, S.E.; Meca-Lallana, J.; Ramió-Torrentà, L.; Nehrych, T.; Pashkovskyy, V.; Moskovko, S.; Kalbus, O.; Khavunka, M.; Pryshchepa, V.; Goloborodko, A.; Wynn, D.; Honeycutt, W.; Wray, S.; Steingo, B.; LaGanke, C.; Huang, D.; Hemphill, J.M.; Goldstick, L.; Robertson, D. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2021, 20(9), 729-738. doi: 10.1016/S1474-4422(21)00237-4 PMID: 34418400
- Zinger, N.; Ponath, G.; Sweeney, E.; Nguyen, T.D.; Lo, C.H.; Diaz, I.; Dimov, A.; Teng, L.; Zexter, L.; Comunale, J.; Wang, Y.; Pitt, D.; Gauthier, S.A. Dimethyl fumarate reduces inflammation in chronic active multiple sclerosis lesions. Neurol. Neuroimmunol. Neuroinflamm., 2022, 9(2), e1138. doi: 10.1212/NXI.0000000000001138 PMID: 35046083
- Preziosa, P.; Pagani, E.; Moiola, L.; Rodegher, M.; Filippi, M.; Rocca, M.A. Occurrence and microstructural features of slowly expanding lesions on fingolimod or natalizumab treatment in multiple sclerosis. Mult. Scler., 2021, 27(10), 1520-1532. doi: 10.1177/1352458520969105 PMID: 33183125
- De Stefano, N.; Stromillo, M.L.; Giorgio, A.; Bartolozzi, M.L.; Battaglini, M.; Baldini, M.; Portaccio, E.; Amato, M.P.; Sormani, M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2015, 87(1), jnnp-2014-309903. doi: 10.1136/jnnp-2014-309903 PMID: 25904813
- Fisher, E.; Rudick, R.A.; Cutter, G.; Baier, M.; Miller, D.; Weinstock-Guttman, B.; Mass, M.K.; Dougherty, D.S.; Simonian, N.A. Relationship between brain atrophy and disability: An 8-year follow-up study of multiple sclerosis patients. Mult. Scler., 2000, 6(6), 373-377. doi: 10.1177/135245850000600602 PMID: 11212131
- Sormani, M.P.; Arnold, D.L.; De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol., 2014, 75(1), 43-49. doi: 10.1002/ana.24018 PMID: 24006277
- Andravizou, A.; Dardiotis, E.; Artemiadis, A.; Sokratous, M.; Siokas, V.; Tsouris, Z.; Aloizou, A.M.; Nikolaidis, I.; Bakirtzis, C.; Tsivgoulis, G.; Deretzi, G.; Grigoriadis, N.; Bogdanos, D.P.; Hadjigeorgiou, G.M. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Auto Immun. Highlights, 2019, 10(1), 7. doi: 10.1186/s13317-019-0117-5 PMID: 32257063
- Tsagkas, C.; Magon, S.; Gaetano, L.; Pezold, S.; Naegelin, Y.; Amann, M.; Stippich, C.; Cattin, P.; Wuerfel, J.; Bieri, O.; Sprenger, T.; Kappos, L.; Parmar, K. Spinal cord volume loss. Neurology, 2018, 91(4), e349-e358. doi: 10.1212/WNL.0000000000005853 PMID: 29950437
- Casserly, C.; Seyman, E.E.; Alcaide-Leon, P.; Guenette, M.; Lyons, C.; Sankar, S.; Svendrovski, A.; Baral, S.; Oh, J. Spinal cord atrophy in multiple sclerosis: A systematic review and meta‐analysis. J. Neuroimaging, 2018, 28(6), 556-586. doi: 10.1111/jon.12553 PMID: 30102003
- Sastre-Garriga, J.; Pareto, D.; Battaglini, M.; Rocca, M.A.; Ciccarelli, O.; Enzinger, C.; Wuerfel, J.; Sormani, M.P.; Barkhof, F.; Yousry, T.A.; De Stefano, N.; Tintoré, M.; Filippi, M.; Gasperini, C.; Kappos, L.; Río, J.; Frederiksen, J.; Palace, J.; Vrenken, H.; Montalban, X.; Rovira, À. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat. Rev. Neurol., 2020, 16(3), 171-182. doi: 10.1038/s41582-020-0314-x PMID: 32094485
- Le Garff-Tavernier, M.; Decocq, J.; de Romeuf, C.; Parizot, C.; Dutertre, C.A.; Chapiro, E.; Davi, F.; Debré, P.; Prost, J.F.; Teillaud, J.L.; Merle-Beral, H.; Vieillard, V. Analysis of CD16+CD56dim NK cells from CLL patients: evidence supporting a therapeutic strategy with optimized anti-CD20 monoclonal antibodies. Leukemia, 2011, 25(1), 101-109. doi: 10.1038/leu.2010.240 PMID: 20975664
- Fox, E.; Lovett-Racke, A.E.; Gormley, M.; Liu, Y.; Petracca, M.; Cocozza, S.; Shubin, R.; Wray, S.; Weiss, M.S.; Bosco, J.A.; Power, S.A.; Mok, K.; Inglese, M. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult. Scler., 2021, 27(3), 420-429. doi: 10.1177/1352458520918375 PMID: 32351164
- Babiker, H.M.; Glode, A.E.; Cooke, L.S.; Mahadevan, D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin. Investig. Drugs, 2018, 27(4), 407-412. doi: 10.1080/13543784.2018.1459560 PMID: 29609506
- Le Garff-Tavernier, M.; Herbi, L.; de Romeuf, C.; Nguyen-Khac, F.; Davi, F.; Grelier, A.; Boudjoghra, M.; Maloum, K.; Choquet, S.; Urbain, R.; Vieillard, V.; Merle-Béral, H. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia, 2014, 28(1), 230-233. doi: 10.1038/leu.2013.240 PMID: 23958919
- Steinman, L.; Fox, E.; Hartung, H.P.; Alvarez, E.; Qian, P.; Wray, S.; Robertson, D.; Huang, D.; Selmaj, K.; Wynn, D.; Cutter, G.; Mok, K.; Hsu, Y.; Xu, Y.; Weiss, M.S.; Bosco, J.A.; Power, S.A.; Lee, L.; Miskin, H.P.; Cree, B.A.C. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N. Engl. J. Med., 2022, 387(8), 704-714. doi: 10.1056/NEJMoa2201904 PMID: 36001711
- TG Therapeutics, Inc. Phase III: UbLiTuximab In Multiple Sclerosis Treatment Effects (ULTIMATE I STUDY); clinicaltrials.gov. NCT03277261, 2021.
- TG Therapeutics, Inc. Phase III: UbLiTuximab in Multiple Sclerosis Treatment Effects (ULTIMATE II STUDY); clinicaltrials.gov. NCT03277248, 2021.
- Burger, J.A. Bruton tyrosine kinase inhibitors. Cancer J., 2019, 25(6), 386-393. doi: 10.1097/PPO.0000000000000412 PMID: 31764119
- Piehl, F. Current and emerging disease‐modulatory therapies and treatment targets for multiple sclerosis. J. Intern. Med., 2021, 289(6), 771-791. doi: 10.1111/joim.13215 PMID: 33258193
- Ní Gabhann, J.; Hams, E.; Smith, S.; Wynne, C.; Byrne, J.C.; Brennan, K.; Spence, S.; Kissenpfennig, A.; Johnston, J.A.; Fallon, P.G.; Jefferies, C.A. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One, 2014, 9(1), e85834. doi: 10.1371/journal.pone.0085834 PMID: 24465735
- Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med., 2019, 380(25), 2406-2417. doi: 10.1056/NEJMoa1901981 PMID: 31075187
- Akinleye, A.; Chen, Y.; Mukhi, N.; Song, Y.; Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol., 2013, 6(1), 59. doi: 10.1186/1756-8722-6-59 PMID: 23958373
- Hartkamp, L.M.; Fine, J.S.; van Es, I.E.; Tang, M.W.; Smith, M.; Woods, J.; Narula, S.; DeMartino, J.; Tak, P.P.; Reedquist, K.A. Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann. Rheum. Dis., 2015, 74(8), 1603-1611. doi: 10.1136/annrheumdis-2013-204143 PMID: 24764451
- Corneth, O.B.J.; Verstappen, G.M.P.; Paulissen, S.M.J.; de Bruijn, M.J.W.; Rip, J.; Lukkes, M.; van Hamburg, J.P.; Lubberts, E.; Bootsma, H.; Kroese, F.G.M.; Hendriks, R.W. Enhanced brutons tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol., 2017, 69(6), 1313-1324. doi: 10.1002/art.40059 PMID: 28141917
- EMD Serono Research & Development Institute, Inc.. A randomized, double-blind, placebo-controlled phase II study of M2951 with a parallel, open-label, active control group (tecfidera), in patients with relapsing multiple sclerosis to evaluate efficacy, safety, tolerability, pharmacokinetics, and biological activity.; clinicaltrials.gov. NCT02975349, 2021.
- EMD Serono Research & Development Institute, Inc.. A phase III, multicenter, randomized, parallel group, double blind, double dummy, active controlled study of evobrutinib compared with an interferon beta 1a (Avonex®), in participants with relapsing multiple sclerosis to evaluate efficacy and safety; clinicaltrials.gov. NCT04032158, 2021.
- EMD Serono Research & Development Institute, Inc.. A phase III, multicenter, randomized, parallel group, double blind, double dummy, active controlled study of evobrutinib compared with an interferon beta 1a (Avonex®), in participants with RMS to evaluate efficacy and safety; clinicaltrials.gov. NCT04032171, 2021.
- Sanofi. A Phase 2b Dose-Finding Study for SAR442168, a Brutons Tyrosine kinase inhibitor, in participants with relapsing Multiple sclerosis; clinicaltrials.gov. NCT03889639, 2022.
- Sanofi. A Phase 3, Randomized, double-blind efficacy and safety study comparing SAR442168 to teriflunomide (Aubagio®) in participants with relapsing forms of multiple sclerosis; clinicaltrials.gov. NCT04410978, 2022.
- Sanofi. A phase 3, randomized, double-blind efficacy and safety study comparing SAR442168 to teriflunomide (Aubagio®) in participants with relapsing forms of multiple sclerosis; clinicaltrials.gov. NCT04410991, 2022.
- Sanofi. A phase 3, randomized, double-blind, efficacy and safety study comparing SAR442168 to placebo in participants with primary progressive multiple sclerosis (PERSEUS); clinicaltrials.gov. NCT04458051, 2022.
- Sanofi. A phase 3, randomized, double-blind, efficacy and safety study comparing SAR442168 to placebo in participants with nonrelapsing secondary progressive multiple sclerosis; clinicaltrials.gov. NCT04180488, 2022.
- American Academy of Neurology Abstract Website 2021. Available at:https://index.mirasmart.com/AAN2021/PDFfiles/AAN2021-004437.html
- Hoffmann-La Roche. A phase iii multicenter, randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with ocrelizumab in adult patients with primary progressive multiple sclerosis.; clinicaltrials.gov. NCT04544449, 2022.
- Hoffmann-La Roche. A phase III multicenter randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with teriflunomide in adult patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT04586023, 2022.
- Hoffmann-La Roche. A phase III multicenter randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with teriflunomide in adult patients with relapsing multiple sclerosis; clinicaltrial.gov. NCT04586010, 2022.
- Oh, J.; Cohen, S.; Isenberg, D.; Maurer, M.; Galanter, J.; Chu, T.; Teterina, A.; Goodyear, A.; Mandel, C.; Lee, C. The safety of fenebrutinib in a large population of patients with diverse autoimmune indications supports investigation in multiple sclerosis (MS) (4564). Neurology, 2021, 96.
- Dhillon, S. Orelabrutinib: First approval. Drugs, 2021, 81(4), 503-507. doi: 10.1007/s40265-021-01482-5 PMID: 33704654
- Beijing InnoCare Pharma Tech Co., Ltd. A randomized, doubleblind, placebo-controlled phase 2 study of orelabrutinib in patients with relapsing-remitting multiple sclerosis to evaluate efficacy, safety, tolerability, pharmacokinetics, and biological activity; clinicaltrials.gov. NCT04711148, 2022.
- Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Castéran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; Voisset, E.; Arock, M.; Auclair, C.; Leventhal, P.S.; Mansfield, C.D.; Moussy, A.; Hermine, O. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One, 2009, 4(9), e7258. doi: 10.1371/journal.pone.0007258 PMID: 19789626
- AB Science. A phase 2a, randomized, double-blind, placebocontrolled study to evaluate the activity of oral AB1010 administered at 2 dose levels to patients with primary progressive or relapse-free secondary progressive multiple sclerosis; clinicaltrials.gov. Astellas Pharma Global Development, Inc, 2018.
- Vermersch, P.; Benrabah, R.; Schmidt, N.; Zéphir, H.; Clavelou, P.; Vongsouthi, C.; Dubreuil, P.; Moussy, A.; Hermine, O. Masitinib treatment in patients with progressive multiple sclerosis : A randomized pilot study. BMC Neurol., 2012, 12(1), 36. doi: 10.1186/1471-2377-12-36 PMID: 22691628
- AB Science. A 96 week, prospective, multicentre, randomized, double-blind, placebo-controlled, 2 parallel-groups, phase 3 study to compare efficacy and safety of masitinib 4.5 mg/kg/day versus placebo in the treatment of patients with primary progressive or relapse-free secondary progressive multiple sclerosis; clinicaltrials.gov. FR0010557264AB, 2020.
- Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; Johnson, K.; Lolis, E.J. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci., 2010, 107(25), 11313-11318. doi: 10.1073/pnas.1002716107 PMID: 20534506
- Ruiz-Pérez, D.; Benito, J.; Polo, G.; Largo, C.; Aguado, D.; Sanz, L.; Gómez de Segura, I.A. The effects of the tolllike receptor 4 Antagonist, Ibudilast, on Sevofluranes minimum alveolar concentration and the delayed remifentanilinduced increase in the minimum alveolar concentration in rats. Anesth. Analg., 2016, 122(5), 1370-1376. doi: 10.1213/ANE.0000000000001171 PMID: 26859874
- Su, Y.; Wang, Y.; Zhou, Y.; Zhu, Z.; Zhang, Q.; Zhang, X.; Wang, W.; Gu, X.; Guo, A.; Wang, Y. Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget, 2017, 8(2), 2719-2730. doi: 10.18632/oncotarget.13739 PMID: 27926507
- Hagman, S.; Raunio, M.; Rossi, M.; Dastidar, P.; Elovaara, I. Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study. J. Neuroimmunol., 2011, 234(1-2), 141-147. doi: 10.1016/j.jneuroim.2011.02.009 PMID: 21397339
- Barkhof, F.; Hulst, H.E.; Drulovic, J.; Uitdehaag, B.M.J.; Matsuda, K.; Landin, R. Ibudilast in relapsing-remitting multiple sclerosis: A neuroprotectant? Neurology, 2010, 74(13), 1033-1040. doi: 10.1212/WNL.0b013e3181d7d651 PMID: 20200338
- MediciNova. A phase 2 randomized, double-blind, placebocontrolled study to evaluate the safety, tolerability and activity of ibudilast (MN-166) in subjects with progressive multiple sclerosis; clinicaltrials.gov. NCT01982942, 2020.
- Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; Ashokkumar, A.; Barnes, J.; Ecklund, D.; Klingner, E.; Koepp, M.; Long, J.D.; Natarajan, S.; Thornell, B.; Yankey, J.; Bermel, R.A.; Debbins, J.P.; Huang, X.; Jagodnik, P.; Lowe, M.J.; Nakamura, K.; Narayanan, S.; Sakaie, K.E.; Thoomukuntla, B.; Zhou, X.; Krieger, S.; Alvarez, E.; Apperson, M.; Bashir, K.; Cohen, B.A.; Coyle, P.K.; Delgado, S.; Dewitt, L.D.; Flores, A.; Giesser, B.S.; Goldman, M.D.; Jubelt, B.; Lava, N.; Lynch, S.G.; Moses, H.; Ontaneda, D.; Perumal, J.S.; Racke, M.; Repovic, P.; Riley, C.S.; Severson, C.; Shinnar, S.; Suski, V.; Weinstock-Guttman, B.; Yadav, V.; Zabeti, A. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med., 2018, 379(9), 846-855. doi: 10.1056/NEJMoa1803583 PMID: 30157388
- Mi, S.; Blake Pepinsky, R.; Cadavid, D. Blocking LINGO-1 as a therapy to promote CNS repair : From concept to the clinic. CNS Drugs, 2013, 27(7), 493-503. doi: 10.1007/s40263-013-0068-8 PMID: 23681979
- Mi, S.; Miller, R.H.; Lee, X.; Scott, M.L.; Shulag-Morskaya, S.; Shao, Z.; Chang, J.; Thill, G.; Levesque, M.; Zhang, M.; Hession, C.; Sah, D.; Trapp, B.; He, Z.; Jung, V.; McCoy, J.M.; Pepinsky, R.B. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci., 2005, 8(6), 745-751. doi: 10.1038/nn1460 PMID: 15895088
- Mi, S.; Miller, R.H.; Tang, W.; Lee, X.; Hu, B.; Wu, W.; Zhang, Y.; Shields, C.B.; Zhang, Y.; Miklasz, S.; Shea, D.; Mason, J.; Franklin, R.J.M.; Ji, B.; Shao, Z.; Chédotal, A.; Bernard, F.; Roulois, A.; Xu, J.; Jung, V.; Pepinsky, B. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol., 2009, 65(3), 304-315. doi: 10.1002/ana.21581 PMID: 19334062
- Biogen. A randomized, double-blind, placebo-controlled, parallelgroup, dose-ranging study to assess the efficacy, safety, tolerability, and pharmacokinetics of BIIB033 in subjects with relapsing forms of multiple sclerosis when used concurrently with avonex; clinicaltrials.gov. NCT01864148, 2017.
- Cadavid, D.; Mellion, M.; Hupperts, R.; Edwards, K.R.; Calabresi, P.A.; Drulović, J.; Giovannoni, G.; Hartung, H.P.; Arnold, D.L.; Fisher, E.; Rudick, R.; Mi, S.; Chai, Y.; Li, J.; Zhang, Y.; Cheng, W.; Xu, L.; Zhu, B.; Green, S.M.; Chang, I.; Deykin, A.; Sheikh, S.I.; Agüera Morales, E.; Al Khedr, A.; Ampapa, R.; Arroyo, R.; Belkin, M.; Bonek, R.; Boyko, A.; Capra, R.; Centonze, D.; Clavelou, P.; Debouverie, M.; Drulovic, J.; Edwards, K.; Evangelou, N.; Evdoshenko, E.; Fernández, O.; Fernández Sánchez, V.; Freedman, M.; Freedman, S.; Fryze, W.; Garcia-Merino, A.; Gavric-Kezic, M.; Ghezzi, A.; Gout, O.; Grimaldi, L.; Hendin, B.; Hertmanowska, H.; Hintzen, R.; Hradilek, P.; Hupperts, R.; Ilkowski, J.; Ivashinenkova, E.; Izquierdo, G.; Jacques, F.; Jakab, G.; Khabirov, F.; Klodowska-Duda, G.; Komoly, S.; Kostic, S.; Kovarova, I.; Kremenchuzky, M.; Laganke, C.; LaPierre, Y.; Maciejowski, M.; Maison, F.G.; Marfia, G.A.; Martínez Yélamos, S.; Meluzinova, E.; Montalban, X.; Murray, R.; Naismith, R.; Newsome, S.; Nguyen, V.; Oreja, D.; Pardo, G.; Pasechnik, E.; Patti, F.; Potemkowski, A.; Prokopenko, S.; Qian, P.; Rodríguez-Antigüedad, A.; Rossman, H.; Rozsa, C.; Sánchez López, F.; Selmaj, K.; Silber, E.; Stepien, A.; Stepniewska, A.; Swiat, M.; Toncev, G.; Tourbah, A.; Trushnikova, T.; Uccelli, A.; Vachova, M.; Valis, M.; Vecsei, L.; Wiertlewski, S.; Zaffaroni, M.; Zielinski, T. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY) : A randomised, placebo-controlled, phase 2 trial. Lancet Neurol., 2019, 18(9), 845-856. doi: 10.1016/S1474-4422(19)30137-1 PMID: 31285147
- Biogen. A multicenter, randomized, double-blind, placebocontrolled study with optional open-label extension in subjects with relapsing multiple sclerosis to evaluate the efficacy and safety of BIIB033 as an add-on therapy to anti-inflammatory diseasemodifying therapies; clinicaltrials.gov. NCT03222973, 2022.
- Biogen. A multicenter, double-blind, placebo-controlled, parallelgroup, dose-ranging phase 2 study to evaluate the efficacy and safety of Oral BIIB061 as add-on therapy to interferon-beta 1 or glatiramer acetate therapies in relapsing multiple sclerosis; clinicaltrials.gov. D1690C00024, 2021.
- Bonaventura, G.; Munafò, A.; Bellanca, C.M.; La Cognata, V.; Iemmolo, R.; Attaguile, G.A.; Di Mauro, R.; Di Benedetto, G.; Cantarella, G.; Barcellona, M.L.; Cavallaro, S.; Bernardini, R. Stem cells : Innovative therapeutic options for neurodegenerative diseases? Cells, 2021, 10(8), 1992. doi: 10.3390/cells10081992 PMID: 34440761
- Moayeri, A.; Nazm Bojnordi, M.; Haratizadeh, S.; Esmaeilnejad-Moghadam, A.; Alizadeh, R.; Ghasemi Hamidabadi, H. Transdifferentiation of human dental pulp stem cells into oligoprogenitor cells. Basic Clin. Neurosci., 2017, 8(5), 387-394. doi: 10.18869/nirp.bcn.8.5.387 PMID: 29167725
- Pluchino, S.; Martino, G. The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders. J. Neurol. Sci., 2005, 233(1-2), 117-119. doi: 10.1016/j.jns.2005.03.026 PMID: 15896808
- Chopp, M.; Li, Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol., 2002, 1(2), 92-100. doi: 10.1016/S1474-4422(02)00040-6 PMID: 12849513
- Teixeira, F.G.; Carvalho, M.M.; Sousa, N.; Salgado, A.J. Mesenchymal stem cells secretome : A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci., 2013, 70(20), 3871-3882. doi: 10.1007/s00018-013-1290-8 PMID: 23456256
- Alanazi, A.; Alassiri, M.; Jawdat, D.; Almalik, Y. Mesenchymal stem cell therapy : A review of clinical trials for multiple sclerosis. Regen. Ther., 2022, 21, 201-209. doi: 10.1016/j.reth.2022.07.003 PMID: 36092509
- Laudani, S.; La Cognata, V.; Iemmolo, R.; Bonaventura, G.; Villaggio, G.; Saccone, S.; Barcellona, M.L.; Cavallaro, S.; Sinatra, F. Effect of a bone marrow-derived extracellular matrix on cell adhesion and neural induction of dental pulp stem cells. Front. Cell Dev. Biol., 2020, 8, 100. doi: 10.3389/fcell.2020.00100 PMID: 32211401
- Ghasemi Hamidabadi, H.; Rezvani, Z.; Nazm Bojnordi, M.; Shirinzadeh, H.; Seifalian, A.M.; Joghataei, M.T.; Razaghpour, M.; Alibakhshi, A.; Yazdanpanah, A.; Salimi, M.; Mozafari, M.; Urbanska, A.M.; Reis, R.L.; Kundu, S.C.; Gholipourmalekabadi, M. Chitosan-intercalated montmorillonite/poly(vinyl alcohol) nanofibers as a platform to guide neuronlike differentiation of human dental pulp stem cells. ACS Appl. Mater. Interfaces, 2017, 9(13), 11392-11404. doi: 10.1021/acsami.6b14283 PMID: 28117963
- Caseiro, A.R.; Pereira, T.; Ivanova, G.; Luís, A.L.; Maurício, A.C. Neuromuscular regeneration : Perspective on the application of mesenchymal stem cells and their secretion products. Stem Cells Int., 2016, 2016, 1-16. doi: 10.1155/2016/9756973 PMID: 26880998
- Hidalgo San Jose, L.; Stephens, P.; Song, B.; Barrow, D. Microfluidic encapsulation supports stem cell viability, proliferation, and neuronal differentiation. Tissue Eng. Part C Methods, 2018, 24(3), 158-170. doi: 10.1089/ten.tec.2017.0368 PMID: 29258387
- Sakai, K.; Yamamoto, A.; Matsubara, K.; Nakamura, S.; Naruse, M.; Yamagata, M.; Sakamoto, K.; Tauchi, R.; Wakao, N.; Imagama, S.; Hibi, H.; Kadomatsu, K.; Ishiguro, N.; Ueda, M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J. Clin. Invest., 2011, 122(1), 80-90. doi: 10.1172/JCI59251 PMID: 22133879
- Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Paracrinemediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells : Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One, 2014, 9(10), e109305. doi: 10.1371/journal.pone.0109305 PMID: 25290916
- Gancheva, M.R.; Kremer, K.L.; Gronthos, S.; Koblar, S.A. Using dental pulp stem cells for stroke therapy. Front. Neurol., 2019, 10, 422. doi: 10.3389/fneur.2019.00422 PMID: 31110489
- Xiao, Z.; Lei, T.; Liu, Y.; Yang, Y.; Bi, W.; Du, H. The potential therapy with dental tissuederived mesenchymal stem cells in Parkinsons disease. Stem Cell Res. Ther., 2021, 12(1), 5. doi: 10.1186/s13287-020-01957-4 PMID: 33407864
- Darabi, S.; Tiraihi, T.; Nazm Bojnordi, M.; Ghasemi Hamidabadi, H.; Rezaei, N.; Zahiri, M.; Alizadeh, R. Transdifferentiation of human dental pulp stem cells into cholinergiclike neurons via nerve growth factor. Basic Clin. Neurosci., 2019, 10(6), 609-618. doi: 10.32598/bcn.10.6.609 PMID: 32477478
- Dhanushkodi, A.; Shamir, C.; Venugopal, C. Dental pulp stem cells for treating neurodegenerative diseases. Neural Regen. Res., 2015, 10(12), 1910-1911. doi: 10.4103/1673-5374.169629 PMID: 26889163
- Victor, A.K.; Reiter, L.T. Dental pulp stem cells for the study of neurogenetic disorders. Hum. Mol. Genet., 2017, 26(R2), R166-R171. doi: 10.1093/hmg/ddx208 PMID: 28582499
- Alsaeedi, H.A.; Koh, A.E.H.; Lam, C.; Rashid, M.B.A.; Harun, M.H.N.; Saleh, M.F.B.M.; Teh, S.W.; Luu, C.D.; Ng, M.H.; Isa, H.M.; Leow, S.N.; Then, K.Y.; Bastion, M.L.C.; Mok, P.L.; Muthuvenkatachalam, B.S.; Samrot, A.V.; Swamy, K.B.; Nandakumar, J.; Kumar, S.S. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J. Photochem. Photobiol. B, 2019, 198, 111561. doi: 10.1016/j.jphotobiol.2019.111561 PMID: 31352000
- Feng, X.; Chen, P.; Zhao, X.; Wang, J.; Wang, H. Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol., 2021, 21(1), 26. doi: 10.1186/s12886-020-01795-1 PMID: 33422026
- Blakemore, W.F.; Franklin, R.J.M. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant., 2000, 9(2), 289-294. doi: 10.1177/096368970000900214 PMID: 10811401
- Huang, A.H.C.; Chen, Y.K.; Lin, L.M.; Shieh, T.Y.; Chan, A.W.S. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J. Oral Pathol. Med., 2008, 37(9), 571-574. doi: 10.1111/j.1600-0714.2008.00654.x PMID: 18331285
- Sloan, A.J.; Smith, A.J. Stem cells and the dental pulp : Potential roles in dentine regeneration and repair. Oral Dis., 2007, 13(2), 151-157. doi: 10.1111/j.1601-0825.2006.01346.x PMID: 17305615
- Chang, C.C.; Chang, K.C.; Tsai, S.J.; Chang, H.H.; Lin, C.P. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J. Formos. Med. Assoc., 2014, 113(12), 956-965. doi: 10.1016/j.jfma.2014.09.003 PMID: 25438878
- Chun, S.Y.; Soker, S.; Jang, Y.J.; Kwon, T.G.; Yoo, E.S. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in Vitro J. Korean Med. Sci., 2016, 31(2), 171-177. doi: 10.3346/jkms.2016.31.2.171 PMID: 26839468
Supplementary files
