The Basal Ganglia Downstream Control of Action – An Evolutionarily Conserved Strategy


Cite item

Full Text

Abstract

The motor areas of the cortex and the basal ganglia both contribute to determining which motor actions will be recruited at any moment in time, and their functions are intertwined. Here, we review the basal ganglia mechanisms underlying the selection of behavior of the downstream control of motor centers in the midbrain and brainstem and show that the basic organization of the forebrain motor system is evolutionarily conserved throughout vertebrate phylogeny. The output level of the basal ganglia (e.g. substantia nigra pars reticulata) has GABAergic neurons that are spontaneously active at rest and inhibit a number of specific motor centers, each of which can be relieved from inhibition if the inhibitory output neurons themselves become inhibited. The motor areas of the cortex act partially via the dorsolateral striatum (putamen), which has specific modules for the forelimb, hindlimb, trunk, etc. Each module operates in turn through the two types of striatal projection neurons that control the output modules of the basal ganglia and thereby the downstream motor centers. The mechanisms for lateral inhibition in the striatum are reviewed as well as other striatal mechanisms contributing to action selection. The motor cortex also exerts a direct excitatory action on specific motor centers. An overview is given of the basal ganglia control exerted on the different midbrain/brainstem motor centers, and the efference copy information fed back via the thalamus to the striatum and cortex, which is of importance for the planning of future movements.

About the authors

Johanna Frost-Nylén

Department of Neuroscience, Karolinska Institutet

Email: info@benthamscience.net

William Thompson

Department of Neuroscience, Karolinska Institutet

Email: info@benthamscience.net

Brita Robertson

Department of Neuroscience, Karolinska Institutet

Email: info@benthamscience.net

Sten Grillner

Department of Neuroscience, Karolinska Institutet

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bjursten, L.M.; Norrsell, K.; Norrsell, U. Behavioural repertory of cats without cerebral cortex from infancy. Exp. Brain Res., 1976, 25(2), 115-130. doi: 10.1007/BF00234897 PMID: 1278272
  2. Kawai, R.; Markman, T.; Poddar, R.; Ko, R.; Fantana, A.L.; Dhawale, A.K.; Kampff, A.R.; Ölveczky, B.P. Motor cortex is required for learning but not for executing a motor skill. Neuron, 2015, 86(3), 800-812. doi: 10.1016/j.neuron.2015.03.024 PMID: 25892304
  3. Ericsson, J.; Silberberg, G.; Robertson, B.; Wikström, M.A.; Grillner, S. Striatal cellular properties conserved from lampreys to mammals. J. Physiol., 2011, 589(12), 2979-2992. doi: 10.1113/jphysiol.2011.209643 PMID: 21502291
  4. Ericsson, J.; Stephenson-Jones, M.; Kardamakis, A.; Robertson, B.; Silberberg, G.; Grillner, S. Evolutionarily conserved differences in pallial and thalamic short-term synaptic plasticity in striatum. J. Physiol., 2013, 591(4), 859-874. doi: 10.1113/jphysiol.2012.236869 PMID: 23148315
  5. Ericsson, J.; Stephenson-Jones, M.; Pérez-Fernández, J.; Robertson, B.; Silberberg, G.; Grillner, S. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. J. Neurosci., 2013, 33(18), 8045-8054. doi: 10.1523/JNEUROSCI.5881-12.2013 PMID: 23637194
  6. Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100. doi: 10.1016/j.cub.2016.06.041 PMID: 27780050
  7. Stephenson-Jones, M.; Ericsson, J.; Robertson, B.; Grillner, S. Evolution of the basal ganglia: Dual-output pathways conserved throughout vertebrate phylogeny. J. Comp. Neurol., 2012, 520(13), 2957-2973. doi: 10.1002/cne.23087 PMID: 22351244
  8. Stephenson-Jones, M.; Kardamakis, A.A.; Robertson, B.; Grillner, S. Independent circuits in the basal ganglia for the evaluation and selection of actions. Proc. Natl. Acad. Sci. USA, 2013, 110(38), E3670-E3679. doi: 10.1073/pnas.1314815110 PMID: 24003130
  9. Stephenson-Jones, M.; Samuelsson, E.; Ericsson, J.; Robertson, B.; Grillner, S. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr. Biol., 2011, 21(13), 1081-1091. doi: 10.1016/j.cub.2011.05.001 PMID: 21700460
  10. Ocaña, F.M.; Suryanarayana, S.M.; Saitoh, K.; Kardamakis, A.A.; Capantini, L.; Robertson, B.; Grillner, S. The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr. Biol., 2015, 25(4), 413-423. doi: 10.1016/j.cub.2014.12.013 PMID: 25619762
  11. Suryanarayana, S.M.; Pérez-Fernández, J.; Robertson, B.; Grillner, S. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol., 2020, 4(4), 639-651. doi: 10.1038/s41559-020-1137-2 PMID: 32203472
  12. Suryanarayana, S.M.; Robertson, B.; Wallén, P.; Grillner, S. The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr. Biol., 2017, 27(21), 3264-3277.e5. doi: 10.1016/j.cub.2017.09.034 PMID: 29056451
  13. Pérez-Fernández, J.; Kardamakis, A.A.; Suzuki, D.G.; Robertson, B.; Grillner, S. Direct dopaminergic projections from the SNc modulate visuomotor transformation in the lamprey tectum. Neuron, 2017, 96(4), 910-924.e5. doi: 10.1016/j.neuron.2017.09.051 PMID: 29107519
  14. Pérez-Fernández, J.; Stephenson-Jones, M.; Suryanarayana, S.M.; Robertson, B.; Grillner, S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J. Comp. Neurol., 2014, 522(17), 3775-3794. doi: 10.1002/cne.23639 PMID: 24942187
  15. Ryczko, D.; Dubuc, R. Dopamine and the brainstem locomotor networks: From lamprey to human. Front. Neurosci., 2017, 11, 295. doi: 10.3389/fnins.2017.00295 PMID: 28603482
  16. Ryczko, D.; Grätsch, S.; Alpert, M.H.; Cone, J.J.; Kasemir, J.; Ruthe, A.; Beauséjour, P.A.; Auclair, F.; Roitman, M.F.; Alford, S.; Dubuc, R. Descending dopaminergic inputs to reticulospinal neurons promote locomotor movements. J. Neurosci., 2020, 40(44), 8478-8490. doi: 10.1523/JNEUROSCI.2426-19.2020 PMID: 32998974
  17. von Twickel, A.; Kowatschew, D.; Saltürk, M.; Schauer, M.; Robertson, B.; Korsching, S.; Walkowiak, W.; Grillner, S.; Pérez-Fernández, J. Individual dopaminergic neurons of lamprey SNc/ VTA project to both the striatum and optic tectum but restrict Co-release of glutamate to striatum only. Curr. Biol., 2019, 29(4), 677-685.e6. doi: 10.1016/j.cub.2019.01.004 PMID: 30713108
  18. Oorschot, D.E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol., 1996, 366(4), 580-599. doi: 10.1002/(SICI)1096-9861(19960318)366:43.0.CO;2-0 PMID: 8833111
  19. Foster, N.N.; Barry, J.; Korobkova, L.; Garcia, L.; Gao, L.; Becerra, M.; Sherafat, Y.; Peng, B.; Li, X.; Choi, J.H.; Gou, L.; Zingg, B.; Azam, S.; Lo, D.; Khanjani, N.; Zhang, B.; Stanis, J.; Bowman, I.; Cotter, K.; Cao, C.; Yamashita, S.; Tugangui, A.; Li, A.; Jiang, T.; Jia, X.; Feng, Z.; Aquino, S.; Mun, H.S.; Zhu, M.; Santarelli, A.; Benavidez, N.L.; Song, M.; Dan, G.; Fayzullina, M.; Ustrell, S.; Boesen, T.; Johnson, D.L.; Xu, H.; Bienkowski, M.S.; Yang, X.W.; Gong, H.; Levine, M.S.; Wickersham, I.; Luo, Q.; Hahn, J.D.; Lim, B.K.; Zhang, L.I.; Cepeda, C.; Hintiryan, H.; Dong, H.W. The mouse cortico–basal ganglia–thalamic network. Nature, 2021, 598(7879), 188-194. doi: 10.1038/s41586-021-03993-3 PMID: 34616074
  20. Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
  21. Planert, H.; Szydlowski, S.N.; Hjorth, J.J.J.; Grillner, S.; Silberberg, G. Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J. Neurosci., 2010, 30(9), 3499-3507. doi: 10.1523/JNEUROSCI.5139-09.2010 PMID: 20203210
  22. Taverna, S.; Ilijic, E.; Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J. Neurosci., 2008, 28(21), 5504-5512. doi: 10.1523/JNEUROSCI.5493-07.2008 PMID: 18495884
  23. Doig, N.M.; Moss, J.; Bolam, J.P. Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci., 2010, 30(44), 14610-14618. doi: 10.1523/JNEUROSCI.1623-10.2010 PMID: 21048118
  24. Lacey, C.J.; Bolam, J.P.; Magill, P.J. Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J. Neurosci., 2007, 27(16), 4374-4384. doi: 10.1523/JNEUROSCI.5519-06.2007 PMID: 17442822
  25. Morishima, M.; Kawaguchi, Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 2006, 26(16), 4394-4405. doi: 10.1523/JNEUROSCI.0252-06.2006 PMID: 16624959
  26. Shepherd, G.M.G. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 2013, 14(4), 278-291. doi: 10.1038/nrn3469 PMID: 23511908
  27. Mermelstein, P.G.; Song, W.J.; Tkatch, T.; Yan, Z.; Surmeier, D.J. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J. Neurosci., 1998, 18(17), 6650-6661. doi: 10.1523/JNEUROSCI.18-17-06650.1998 PMID: 9712637
  28. Arber, S.; Costa, R.M. Connecting neuronal circuits for movement. Science, 2018, 360(6396), 1403-1404. doi: 10.1126/science.aat5994 PMID: 29954969
  29. McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738. doi: 10.1016/j.neuron.2021.03.017
  30. Fujita, H.; Kodama, T.; du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 2020, 9, e58613. doi: 10.7554/eLife.58613 PMID: 32639229
  31. Smith, Y.; Galvan, A.; Ellender, T.J.; Doig, N.; Villalba, R.M.; Huerta-Ocampo, I.; Wichmann, T.; Bolam, J.P. The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci., 2014, 8, 5. doi: 10.3389/fnsys.2014.00005 PMID: 24523677
  32. Yamanaka, K.; Hori, Y.; Minamimoto, T.; Yamada, H.; Matsumoto, N.; Enomoto, K.; Aosaki, T.; Graybiel, A.M.; Kimura, M. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. J. Neural Transm., 2018, 125(3), 501-513. doi: 10.1007/s00702-017-1713-z PMID: 28324169
  33. Mandelbaum, G.; Taranda, J.; Haynes, T.M.; Hochbaum, D.R.; Huang, K.W.; Hyun, M.; Venkataraju, K.; Straub, C.; Wang, W.; Robertson, K.; Osten, P.; Sabatini, B.L. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 2019, 102(3), 636-652.e7. doi: 10.1016/j.neuron.2019.02.035 PMID: 30905392
  34. Dautan, D. Hacioğlu Bay, H.; Bolam, J.P.; Gerdjikov, T.V.; Mena-Segovia, J. Extrinsic sources of cholinergic innervation of the striatal complex: A whole-brain mapping analysis. Front. Neuroanat., 2016, 10, 1. doi: 10.3389/fnana.2016.00001 PMID: 26834571
  35. Mena-Segovia, J.; Bolam, J.P. Rethinking the pedunculopontine nucleus: From cellular organization to function. Neuron, 2017, 94(1), 7-18. doi: 10.1016/j.neuron.2017.02.027 PMID: 28384477
  36. Du, K.; Wu, Y.W.; Lindroos, R.; Liu, Y.; Rózsa, B.; Katona, G.; Ding, J.B.; Kotaleski, J.H. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(36), E7612-E7621. doi: 10.1073/pnas.1704893114 PMID: 28827326
  37. Nylén, J.; Hjorth, J.J.J.; Kozlov, A.K.; Thunberg, W.; Kotaleski, J.; Grillner, S. The impact of surround inhibition in striatum in silico. Soc. Neurosci., 2022.
  38. Kaila, K.; Price, T.J.; Payne, J.A.; Puskarjov, M.; Voipio, J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci., 2014, 15(10), 637-654. doi: 10.1038/nrn3819 PMID: 25234263
  39. Khirug, S.; Yamada, J.; Afzalov, R.; Voipio, J.; Khiroug, L.; Kaila, K. GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J. Neurosci., 2008, 28(18), 4635-4639. doi: 10.1523/JNEUROSCI.0908-08.2008 PMID: 18448640
  40. Frost, N.J.; Hjorth, J.J.J.; Grillner, S.; Hellgren, K.J. Dopaminergic and cholinergic modulation of large scale networks in silico using Snudda. Front. Neural Circuits, 2021, 15, 748989. doi: 10.3389/fncir.2021.748989 PMID: 34744638
  41. Hjorth, J.J.J.; Kozlov, A.; Carannante, I.; Frost Nylén, J.; Lindroos, R.; Johansson, Y.; Tokarska, A.; Dorst, M.C.; Suryanarayana, S.M.; Silberberg, G.; Hellgren, K.J.; Grillner, S. The microcircuits of striatum in silico. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9554-9565. doi: 10.1073/pnas.2000671117 PMID: 32321828
  42. da Silva, J.A.; Tecuapetla, F.; Paixão, V.; Costa, R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554(7691), 244-248. doi: 10.1038/nature25457 PMID: 29420469
  43. Greengard, P. The neurobiology of slow synaptic transmission. Science, 2001, 294(5544), 1024-1030. doi: 10.1126/science.294.5544.1024 PMID: 11691979
  44. Lindroos, R.; Dorst, M.C.; Du, K. Filipović M.; Keller, D.; Ketzef, M.; Kozlov, A.K.; Kumar, A.; Lindahl, M.; Nair, A.G.; Pérez-Fernández, J.; Grillner, S.; Silberberg, G.; Hellgren Kotaleski, J. Basal ganglia neuromodulation over multiple temporal and structural scales—simulations of direct pathway MSNs investigate the fast onset of dopaminergic effects and predict the role of Kv4.2. Front. Neural Circuits, 2018, 12, 3. doi: 10.3389/fncir.2018.00003 PMID: 29467627
  45. Granger, A.J.; Wallace, M.L.; Sabatini, B.L. Multi-transmitter neurons in the mammalian central nervous system. Curr. Opin. Neurobiol., 2017, 45, 85-91. doi: 10.1016/j.conb.2017.04.007 PMID: 28500992
  46. Papathanou, M.; Creed, M.; Dorst, M.C.; Bimpisidis, Z.; Dumas, S.; Pettersson, H.; Bellone, C.; Silberberg, G.; Lüscher, C.; Wallén-Mackenzie, Å. Targeting VGLUT2 in mature dopamine neurons decreases mesoaccumbal glutamatergic transmission and identifies a role for glutamate co-release in synaptic plasticity by increasing baseline AMPA/NMDA ratio. Front. Neural Circuits, 2018, 12, 64. doi: 10.3389/fncir.2018.00064 PMID: 30210305
  47. Amemori, S.; Amemori, K.; Yoshida, T.; Papageorgiou, G.K.; Xu, R.; Shimazu, H.; Desimone, R.; Graybiel, A.M. Microstimulation of primate neocortex targeting striosomes induces negative decision‐making. Eur. J. Neurosci., 2020, 51(3), 731-741. doi: 10.1111/ejn.14555 PMID: 31429499
  48. Brimblecombe, K.R.; Cragg, S.J. The striosome and matrix compartments of the striatum: A path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci., 2017, 8(2), 235-242. doi: 10.1021/acschemneuro.6b00333 PMID: 27977131
  49. Grillner, S.; Robertson, B.; Kotaleski, J.H. Basal Ganglia-A motion perspective. Compr. Physiol., 2020, 10(4), 1241-1275. doi: 10.1002/cphy.c190045 PMID: 32969510
  50. Klaus, A.; Alves da Silva, J.; Costa, R.M. What, If, and when to move: Basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483. doi: 10.1146/annurev-neuro-072116-031033 PMID: 31018098
  51. Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 2000, 80(3), 953-978. doi: 10.1152/physrev.2000.80.3.953 PMID: 10893428
  52. Grillner, S.; Hellgren, J.; Ménard, A.; Saitoh, K.; Wikström, M. Mechanisms for selection of basic motor programs - roles for the striatum and pallidum. Trends Neurosci., 2005, 28(7), 364-370. doi: 10.1016/j.tins.2005.05.004 PMID: 15935487
  53. Takakusaki, K. Forebrain control of locomotor behaviors. Brain Res. Brain Res. Rev., 2008, 57(1), 192-198. doi: 10.1016/j.brainresrev.2007.06.024 PMID: 17764749
  54. Grillner, S. The motor infrastructure: From ion channels to neuronal networks. Nat. Rev. Neurosci., 2003, 4(7), 573-586. doi: 10.1038/nrn1137 PMID: 12838332
  55. Sitzia, G. The circuit and synaptic organization of the basal ganglia output: mechanistic insights on movements disorders and action control: Karolinska Institutet. PhD thesis, 2022.
  56. Thompson, W.S.; Hjorth, J.J.J. The substantia nigra pars reticulata in vitro and in silico. Soc. Neurosci., 2022.
  57. Ferreira-Pinto, M.J.; Kanodia, H.; Falasconi, A.; Sigrist, M.; Esposito, M.S.; Arber, S. Functional diversity for body actions in the mesencephalic locomotor region. Cell, 2021, 184(17), 4564-4578.e18. doi: 10.1016/j.cell.2021.07.002 PMID: 34302739
  58. Jin, X.; Tecuapetla, F.; Costa, R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 2014, 17(3), 423-430. doi: 10.1038/nn.3632 PMID: 24464039
  59. Nonomura, S.; Nishizawa, K.; Sakai, Y.; Kawaguchi, Y.; Kato, S.; Uchigashima, M.; Watanabe, M.; Yamanaka, K.; Enomoto, K.; Chiken, S.; Sano, H.; Soma, S.; Yoshida, J.; Samejima, K.; Ogawa, M.; Kobayashi, K.; Nambu, A.; Isomura, Y.; Kimura, M. Monitoring and updating of action selection for goal-directed behavior through the striatal direct and indirect pathways. Neuron, 2018, 99(6), 1302-1314.e5. doi: 10.1016/j.neuron.2018.08.002 PMID: 30146299
  60. Tecuapetla, F.; Jin, X.; Lima, S.Q.; Costa, R.M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell, 2016, 166(3), 703-715. doi: 10.1016/j.cell.2016.06.032 PMID: 27453468
  61. Wallén-Mackenzie, Å.; Dumas, S.; Papathanou, M.; Martis Thiele, M.M.; Vlcek, B.; König, N.; Björklund, Å.K. Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun. Biol., 2020, 3(1), 338. doi: 10.1038/s42003-020-1028-8 PMID: 32620779
  62. Nambu, A.; Takada, M.; Inase, M.; Tokuno, H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci., 1996, 16(8), 2671-2683. doi: 10.1523/JNEUROSCI.16-08-02671.1996 PMID: 8786443
  63. Abecassis, Z.A.; Berceau, B.L.; Win, P.H.; García, D.; Xenias, H.S.; Cui, Q.; Pamukcu, A.; Cherian, S.; Hernández, V.M.; Chon, U.; Lim, B.K.; Kim, Y.; Justice, N.J.; Awatramani, R.; Hooks, B.M.; Gerfen, C.R.; Boca, S.M.; Chan, C.S. Npas1+-Nkx2.1+ neurons are an integral part of the cortico-pallido-cortical Loop. J. Neurosci., 2020, 40(4), 743-768. doi: 10.1523/JNEUROSCI.1199-19.2019 PMID: 31811030
  64. Cui, Q.; Du, X.; Chang, I.Y.M.; Pamukcu, A.; Lilascharoen, V.; Berceau, B.L.; García, D.; Hong, D.; Chon, U.; Narayanan, A.; Kim, Y.; Lim, B.K.; Chan, C.S. Striatal direct pathway targets Npas1 + pallidal neurons. J. Neurosci., 2021, 41(18), 3966-3987. doi: 10.1523/JNEUROSCI.2306-20.2021 PMID: 33731445
  65. Karube, F.; Takahashi, S.; Kobayashi, K.; Fujiyama, F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife, 2019, 8, e49511. doi: 10.7554/eLife.49511 PMID: 31711567
  66. Ketzef, M.; Silberberg, G. Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron, 2021, 109(3), 516-529.e4. doi: 10.1016/j.neuron.2020.11.006 PMID: 33248017
  67. Mallet, N.; Micklem, B.R.; Henny, P.; Brown, M.T.; Williams, C.; Bolam, J.P.; Nakamura, K.C.; Magill, P.J. Dichotomous organization of the external globus pallidus. Neuron, 2012, 74(6), 1075-1086. doi: 10.1016/j.neuron.2012.04.027 PMID: 22726837
  68. Mallet, N.; Schmidt, R.; Leventhal, D.; Chen, F.; Amer, N.; Boraud, T.; Berke, J.D. Arkypallidal cells send a stop signal to striatum. Neuron, 2016, 89(2), 308-316. doi: 10.1016/j.neuron.2015.12.017 PMID: 26777273
  69. Lilascharoen, V.; Wang, E.H.J.; Do, N.; Pate, S.C.; Tran, A.N.; Yoon, C.D.; Choi, J.H.; Wang, X.Y.; Pribiag, H.; Park, Y.G.; Chung, K.; Lim, B.K. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits. Nat. Neurosci., 2021, 24(4), 504-515. doi: 10.1038/s41593-021-00810-y PMID: 33723433
  70. Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci., 2014, 17(8), 1022-1030. doi: 10.1038/nn.3743 PMID: 25065439
  71. Picconi, B.; Bagetta, V.; Ghiglieri, V.; Paillè, V.; Di Filippo, M.; Pendolino, V.; Tozzi, A.; Giampà, C.; Fusco, F.R.; Sgobio, C.; Calabresi, P. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134(2), 375-387. doi: 10.1093/brain/awq342 PMID: 21183486
  72. Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001 PMID: 34102128
  73. Grillner, S.; El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev., 2020, 100(1), 271-320. doi: 10.1152/physrev.00015.2019 PMID: 31512990

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers