The Basal Ganglia Downstream Control of Action An Evolutionarily Conserved Strategy
- Authors: Frost-Nylén J.1, Thompson W.1, Robertson B.1, Grillner S.1
-
Affiliations:
- Department of Neuroscience, Karolinska Institutet
- Issue: Vol 22, No 9 (2024)
- Pages: 1419-1430
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644888
- DOI: https://doi.org/10.2174/1570159X21666230810141746
- ID: 644888
Cite item
Full Text
Abstract
The motor areas of the cortex and the basal ganglia both contribute to determining which motor actions will be recruited at any moment in time, and their functions are intertwined. Here, we review the basal ganglia mechanisms underlying the selection of behavior of the downstream control of motor centers in the midbrain and brainstem and show that the basic organization of the forebrain motor system is evolutionarily conserved throughout vertebrate phylogeny. The output level of the basal ganglia (e.g. substantia nigra pars reticulata) has GABAergic neurons that are spontaneously active at rest and inhibit a number of specific motor centers, each of which can be relieved from inhibition if the inhibitory output neurons themselves become inhibited. The motor areas of the cortex act partially via the dorsolateral striatum (putamen), which has specific modules for the forelimb, hindlimb, trunk, etc. Each module operates in turn through the two types of striatal projection neurons that control the output modules of the basal ganglia and thereby the downstream motor centers. The mechanisms for lateral inhibition in the striatum are reviewed as well as other striatal mechanisms contributing to action selection. The motor cortex also exerts a direct excitatory action on specific motor centers. An overview is given of the basal ganglia control exerted on the different midbrain/brainstem motor centers, and the efference copy information fed back via the thalamus to the striatum and cortex, which is of importance for the planning of future movements.
About the authors
Johanna Frost-Nylén
Department of Neuroscience, Karolinska Institutet
Email: info@benthamscience.net
William Thompson
Department of Neuroscience, Karolinska Institutet
Email: info@benthamscience.net
Brita Robertson
Department of Neuroscience, Karolinska Institutet
Email: info@benthamscience.net
Sten Grillner
Department of Neuroscience, Karolinska Institutet
Author for correspondence.
Email: info@benthamscience.net
References
- Bjursten, L.M.; Norrsell, K.; Norrsell, U. Behavioural repertory of cats without cerebral cortex from infancy. Exp. Brain Res., 1976, 25(2), 115-130. doi: 10.1007/BF00234897 PMID: 1278272
- Kawai, R.; Markman, T.; Poddar, R.; Ko, R.; Fantana, A.L.; Dhawale, A.K.; Kampff, A.R.; Ölveczky, B.P. Motor cortex is required for learning but not for executing a motor skill. Neuron, 2015, 86(3), 800-812. doi: 10.1016/j.neuron.2015.03.024 PMID: 25892304
- Ericsson, J.; Silberberg, G.; Robertson, B.; Wikström, M.A.; Grillner, S. Striatal cellular properties conserved from lampreys to mammals. J. Physiol., 2011, 589(12), 2979-2992. doi: 10.1113/jphysiol.2011.209643 PMID: 21502291
- Ericsson, J.; Stephenson-Jones, M.; Kardamakis, A.; Robertson, B.; Silberberg, G.; Grillner, S. Evolutionarily conserved differences in pallial and thalamic short-term synaptic plasticity in striatum. J. Physiol., 2013, 591(4), 859-874. doi: 10.1113/jphysiol.2012.236869 PMID: 23148315
- Ericsson, J.; Stephenson-Jones, M.; Pérez-Fernández, J.; Robertson, B.; Silberberg, G.; Grillner, S. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. J. Neurosci., 2013, 33(18), 8045-8054. doi: 10.1523/JNEUROSCI.5881-12.2013 PMID: 23637194
- Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100. doi: 10.1016/j.cub.2016.06.041 PMID: 27780050
- Stephenson-Jones, M.; Ericsson, J.; Robertson, B.; Grillner, S. Evolution of the basal ganglia: Dual-output pathways conserved throughout vertebrate phylogeny. J. Comp. Neurol., 2012, 520(13), 2957-2973. doi: 10.1002/cne.23087 PMID: 22351244
- Stephenson-Jones, M.; Kardamakis, A.A.; Robertson, B.; Grillner, S. Independent circuits in the basal ganglia for the evaluation and selection of actions. Proc. Natl. Acad. Sci. USA, 2013, 110(38), E3670-E3679. doi: 10.1073/pnas.1314815110 PMID: 24003130
- Stephenson-Jones, M.; Samuelsson, E.; Ericsson, J.; Robertson, B.; Grillner, S. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr. Biol., 2011, 21(13), 1081-1091. doi: 10.1016/j.cub.2011.05.001 PMID: 21700460
- Ocaña, F.M.; Suryanarayana, S.M.; Saitoh, K.; Kardamakis, A.A.; Capantini, L.; Robertson, B.; Grillner, S. The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr. Biol., 2015, 25(4), 413-423. doi: 10.1016/j.cub.2014.12.013 PMID: 25619762
- Suryanarayana, S.M.; Pérez-Fernández, J.; Robertson, B.; Grillner, S. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol., 2020, 4(4), 639-651. doi: 10.1038/s41559-020-1137-2 PMID: 32203472
- Suryanarayana, S.M.; Robertson, B.; Wallén, P.; Grillner, S. The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr. Biol., 2017, 27(21), 3264-3277.e5. doi: 10.1016/j.cub.2017.09.034 PMID: 29056451
- Pérez-Fernández, J.; Kardamakis, A.A.; Suzuki, D.G.; Robertson, B.; Grillner, S. Direct dopaminergic projections from the SNc modulate visuomotor transformation in the lamprey tectum. Neuron, 2017, 96(4), 910-924.e5. doi: 10.1016/j.neuron.2017.09.051 PMID: 29107519
- Pérez-Fernández, J.; Stephenson-Jones, M.; Suryanarayana, S.M.; Robertson, B.; Grillner, S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J. Comp. Neurol., 2014, 522(17), 3775-3794. doi: 10.1002/cne.23639 PMID: 24942187
- Ryczko, D.; Dubuc, R. Dopamine and the brainstem locomotor networks: From lamprey to human. Front. Neurosci., 2017, 11, 295. doi: 10.3389/fnins.2017.00295 PMID: 28603482
- Ryczko, D.; Grätsch, S.; Alpert, M.H.; Cone, J.J.; Kasemir, J.; Ruthe, A.; Beauséjour, P.A.; Auclair, F.; Roitman, M.F.; Alford, S.; Dubuc, R. Descending dopaminergic inputs to reticulospinal neurons promote locomotor movements. J. Neurosci., 2020, 40(44), 8478-8490. doi: 10.1523/JNEUROSCI.2426-19.2020 PMID: 32998974
- von Twickel, A.; Kowatschew, D.; Saltürk, M.; Schauer, M.; Robertson, B.; Korsching, S.; Walkowiak, W.; Grillner, S.; Pérez-Fernández, J. Individual dopaminergic neurons of lamprey SNc/ VTA project to both the striatum and optic tectum but restrict Co-release of glutamate to striatum only. Curr. Biol., 2019, 29(4), 677-685.e6. doi: 10.1016/j.cub.2019.01.004 PMID: 30713108
- Oorschot, D.E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol., 1996, 366(4), 580-599. doi: 10.1002/(SICI)1096-9861(19960318)366:43.0.CO;2-0 PMID: 8833111
- Foster, N.N.; Barry, J.; Korobkova, L.; Garcia, L.; Gao, L.; Becerra, M.; Sherafat, Y.; Peng, B.; Li, X.; Choi, J.H.; Gou, L.; Zingg, B.; Azam, S.; Lo, D.; Khanjani, N.; Zhang, B.; Stanis, J.; Bowman, I.; Cotter, K.; Cao, C.; Yamashita, S.; Tugangui, A.; Li, A.; Jiang, T.; Jia, X.; Feng, Z.; Aquino, S.; Mun, H.S.; Zhu, M.; Santarelli, A.; Benavidez, N.L.; Song, M.; Dan, G.; Fayzullina, M.; Ustrell, S.; Boesen, T.; Johnson, D.L.; Xu, H.; Bienkowski, M.S.; Yang, X.W.; Gong, H.; Levine, M.S.; Wickersham, I.; Luo, Q.; Hahn, J.D.; Lim, B.K.; Zhang, L.I.; Cepeda, C.; Hintiryan, H.; Dong, H.W. The mouse corticobasal gangliathalamic network. Nature, 2021, 598(7879), 188-194. doi: 10.1038/s41586-021-03993-3 PMID: 34616074
- Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
- Planert, H.; Szydlowski, S.N.; Hjorth, J.J.J.; Grillner, S.; Silberberg, G. Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J. Neurosci., 2010, 30(9), 3499-3507. doi: 10.1523/JNEUROSCI.5139-09.2010 PMID: 20203210
- Taverna, S.; Ilijic, E.; Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinsons disease. J. Neurosci., 2008, 28(21), 5504-5512. doi: 10.1523/JNEUROSCI.5493-07.2008 PMID: 18495884
- Doig, N.M.; Moss, J.; Bolam, J.P. Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci., 2010, 30(44), 14610-14618. doi: 10.1523/JNEUROSCI.1623-10.2010 PMID: 21048118
- Lacey, C.J.; Bolam, J.P.; Magill, P.J. Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J. Neurosci., 2007, 27(16), 4374-4384. doi: 10.1523/JNEUROSCI.5519-06.2007 PMID: 17442822
- Morishima, M.; Kawaguchi, Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 2006, 26(16), 4394-4405. doi: 10.1523/JNEUROSCI.0252-06.2006 PMID: 16624959
- Shepherd, G.M.G. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 2013, 14(4), 278-291. doi: 10.1038/nrn3469 PMID: 23511908
- Mermelstein, P.G.; Song, W.J.; Tkatch, T.; Yan, Z.; Surmeier, D.J. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J. Neurosci., 1998, 18(17), 6650-6661. doi: 10.1523/JNEUROSCI.18-17-06650.1998 PMID: 9712637
- Arber, S.; Costa, R.M. Connecting neuronal circuits for movement. Science, 2018, 360(6396), 1403-1404. doi: 10.1126/science.aat5994 PMID: 29954969
- McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738. doi: 10.1016/j.neuron.2021.03.017
- Fujita, H.; Kodama, T.; du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 2020, 9, e58613. doi: 10.7554/eLife.58613 PMID: 32639229
- Smith, Y.; Galvan, A.; Ellender, T.J.; Doig, N.; Villalba, R.M.; Huerta-Ocampo, I.; Wichmann, T.; Bolam, J.P. The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci., 2014, 8, 5. doi: 10.3389/fnsys.2014.00005 PMID: 24523677
- Yamanaka, K.; Hori, Y.; Minamimoto, T.; Yamada, H.; Matsumoto, N.; Enomoto, K.; Aosaki, T.; Graybiel, A.M.; Kimura, M. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. J. Neural Transm., 2018, 125(3), 501-513. doi: 10.1007/s00702-017-1713-z PMID: 28324169
- Mandelbaum, G.; Taranda, J.; Haynes, T.M.; Hochbaum, D.R.; Huang, K.W.; Hyun, M.; Venkataraju, K.; Straub, C.; Wang, W.; Robertson, K.; Osten, P.; Sabatini, B.L. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 2019, 102(3), 636-652.e7. doi: 10.1016/j.neuron.2019.02.035 PMID: 30905392
- Dautan, D. Hacioğlu Bay, H.; Bolam, J.P.; Gerdjikov, T.V.; Mena-Segovia, J. Extrinsic sources of cholinergic innervation of the striatal complex: A whole-brain mapping analysis. Front. Neuroanat., 2016, 10, 1. doi: 10.3389/fnana.2016.00001 PMID: 26834571
- Mena-Segovia, J.; Bolam, J.P. Rethinking the pedunculopontine nucleus: From cellular organization to function. Neuron, 2017, 94(1), 7-18. doi: 10.1016/j.neuron.2017.02.027 PMID: 28384477
- Du, K.; Wu, Y.W.; Lindroos, R.; Liu, Y.; Rózsa, B.; Katona, G.; Ding, J.B.; Kotaleski, J.H. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(36), E7612-E7621. doi: 10.1073/pnas.1704893114 PMID: 28827326
- Nylén, J.; Hjorth, J.J.J.; Kozlov, A.K.; Thunberg, W.; Kotaleski, J.; Grillner, S. The impact of surround inhibition in striatum in silico. Soc. Neurosci., 2022.
- Kaila, K.; Price, T.J.; Payne, J.A.; Puskarjov, M.; Voipio, J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci., 2014, 15(10), 637-654. doi: 10.1038/nrn3819 PMID: 25234263
- Khirug, S.; Yamada, J.; Afzalov, R.; Voipio, J.; Khiroug, L.; Kaila, K. GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J. Neurosci., 2008, 28(18), 4635-4639. doi: 10.1523/JNEUROSCI.0908-08.2008 PMID: 18448640
- Frost, N.J.; Hjorth, J.J.J.; Grillner, S.; Hellgren, K.J. Dopaminergic and cholinergic modulation of large scale networks in silico using Snudda. Front. Neural Circuits, 2021, 15, 748989. doi: 10.3389/fncir.2021.748989 PMID: 34744638
- Hjorth, J.J.J.; Kozlov, A.; Carannante, I.; Frost Nylén, J.; Lindroos, R.; Johansson, Y.; Tokarska, A.; Dorst, M.C.; Suryanarayana, S.M.; Silberberg, G.; Hellgren, K.J.; Grillner, S. The microcircuits of striatum in silico. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9554-9565. doi: 10.1073/pnas.2000671117 PMID: 32321828
- da Silva, J.A.; Tecuapetla, F.; Paixão, V.; Costa, R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554(7691), 244-248. doi: 10.1038/nature25457 PMID: 29420469
- Greengard, P. The neurobiology of slow synaptic transmission. Science, 2001, 294(5544), 1024-1030. doi: 10.1126/science.294.5544.1024 PMID: 11691979
- Lindroos, R.; Dorst, M.C.; Du, K. Filipović M.; Keller, D.; Ketzef, M.; Kozlov, A.K.; Kumar, A.; Lindahl, M.; Nair, A.G.; Pérez-Fernández, J.; Grillner, S.; Silberberg, G.; Hellgren Kotaleski, J. Basal ganglia neuromodulation over multiple temporal and structural scalessimulations of direct pathway MSNs investigate the fast onset of dopaminergic effects and predict the role of Kv4.2. Front. Neural Circuits, 2018, 12, 3. doi: 10.3389/fncir.2018.00003 PMID: 29467627
- Granger, A.J.; Wallace, M.L.; Sabatini, B.L. Multi-transmitter neurons in the mammalian central nervous system. Curr. Opin. Neurobiol., 2017, 45, 85-91. doi: 10.1016/j.conb.2017.04.007 PMID: 28500992
- Papathanou, M.; Creed, M.; Dorst, M.C.; Bimpisidis, Z.; Dumas, S.; Pettersson, H.; Bellone, C.; Silberberg, G.; Lüscher, C.; Wallén-Mackenzie, Å. Targeting VGLUT2 in mature dopamine neurons decreases mesoaccumbal glutamatergic transmission and identifies a role for glutamate co-release in synaptic plasticity by increasing baseline AMPA/NMDA ratio. Front. Neural Circuits, 2018, 12, 64. doi: 10.3389/fncir.2018.00064 PMID: 30210305
- Amemori, S.; Amemori, K.; Yoshida, T.; Papageorgiou, G.K.; Xu, R.; Shimazu, H.; Desimone, R.; Graybiel, A.M. Microstimulation of primate neocortex targeting striosomes induces negative decision‐making. Eur. J. Neurosci., 2020, 51(3), 731-741. doi: 10.1111/ejn.14555 PMID: 31429499
- Brimblecombe, K.R.; Cragg, S.J. The striosome and matrix compartments of the striatum: A path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci., 2017, 8(2), 235-242. doi: 10.1021/acschemneuro.6b00333 PMID: 27977131
- Grillner, S.; Robertson, B.; Kotaleski, J.H. Basal Ganglia-A motion perspective. Compr. Physiol., 2020, 10(4), 1241-1275. doi: 10.1002/cphy.c190045 PMID: 32969510
- Klaus, A.; Alves da Silva, J.; Costa, R.M. What, If, and when to move: Basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483. doi: 10.1146/annurev-neuro-072116-031033 PMID: 31018098
- Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 2000, 80(3), 953-978. doi: 10.1152/physrev.2000.80.3.953 PMID: 10893428
- Grillner, S.; Hellgren, J.; Ménard, A.; Saitoh, K.; Wikström, M. Mechanisms for selection of basic motor programs - roles for the striatum and pallidum. Trends Neurosci., 2005, 28(7), 364-370. doi: 10.1016/j.tins.2005.05.004 PMID: 15935487
- Takakusaki, K. Forebrain control of locomotor behaviors. Brain Res. Brain Res. Rev., 2008, 57(1), 192-198. doi: 10.1016/j.brainresrev.2007.06.024 PMID: 17764749
- Grillner, S. The motor infrastructure: From ion channels to neuronal networks. Nat. Rev. Neurosci., 2003, 4(7), 573-586. doi: 10.1038/nrn1137 PMID: 12838332
- Sitzia, G. The circuit and synaptic organization of the basal ganglia output: mechanistic insights on movements disorders and action control: Karolinska Institutet. PhD thesis, 2022.
- Thompson, W.S.; Hjorth, J.J.J. The substantia nigra pars reticulata in vitro and in silico. Soc. Neurosci., 2022.
- Ferreira-Pinto, M.J.; Kanodia, H.; Falasconi, A.; Sigrist, M.; Esposito, M.S.; Arber, S. Functional diversity for body actions in the mesencephalic locomotor region. Cell, 2021, 184(17), 4564-4578.e18. doi: 10.1016/j.cell.2021.07.002 PMID: 34302739
- Jin, X.; Tecuapetla, F.; Costa, R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 2014, 17(3), 423-430. doi: 10.1038/nn.3632 PMID: 24464039
- Nonomura, S.; Nishizawa, K.; Sakai, Y.; Kawaguchi, Y.; Kato, S.; Uchigashima, M.; Watanabe, M.; Yamanaka, K.; Enomoto, K.; Chiken, S.; Sano, H.; Soma, S.; Yoshida, J.; Samejima, K.; Ogawa, M.; Kobayashi, K.; Nambu, A.; Isomura, Y.; Kimura, M. Monitoring and updating of action selection for goal-directed behavior through the striatal direct and indirect pathways. Neuron, 2018, 99(6), 1302-1314.e5. doi: 10.1016/j.neuron.2018.08.002 PMID: 30146299
- Tecuapetla, F.; Jin, X.; Lima, S.Q.; Costa, R.M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell, 2016, 166(3), 703-715. doi: 10.1016/j.cell.2016.06.032 PMID: 27453468
- Wallén-Mackenzie, Å.; Dumas, S.; Papathanou, M.; Martis Thiele, M.M.; Vlcek, B.; König, N.; Björklund, Å.K. Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun. Biol., 2020, 3(1), 338. doi: 10.1038/s42003-020-1028-8 PMID: 32620779
- Nambu, A.; Takada, M.; Inase, M.; Tokuno, H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci., 1996, 16(8), 2671-2683. doi: 10.1523/JNEUROSCI.16-08-02671.1996 PMID: 8786443
- Abecassis, Z.A.; Berceau, B.L.; Win, P.H.; García, D.; Xenias, H.S.; Cui, Q.; Pamukcu, A.; Cherian, S.; Hernández, V.M.; Chon, U.; Lim, B.K.; Kim, Y.; Justice, N.J.; Awatramani, R.; Hooks, B.M.; Gerfen, C.R.; Boca, S.M.; Chan, C.S. Npas1+-Nkx2.1+ neurons are an integral part of the cortico-pallido-cortical Loop. J. Neurosci., 2020, 40(4), 743-768. doi: 10.1523/JNEUROSCI.1199-19.2019 PMID: 31811030
- Cui, Q.; Du, X.; Chang, I.Y.M.; Pamukcu, A.; Lilascharoen, V.; Berceau, B.L.; García, D.; Hong, D.; Chon, U.; Narayanan, A.; Kim, Y.; Lim, B.K.; Chan, C.S. Striatal direct pathway targets Npas1 + pallidal neurons. J. Neurosci., 2021, 41(18), 3966-3987. doi: 10.1523/JNEUROSCI.2306-20.2021 PMID: 33731445
- Karube, F.; Takahashi, S.; Kobayashi, K.; Fujiyama, F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife, 2019, 8, e49511. doi: 10.7554/eLife.49511 PMID: 31711567
- Ketzef, M.; Silberberg, G. Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron, 2021, 109(3), 516-529.e4. doi: 10.1016/j.neuron.2020.11.006 PMID: 33248017
- Mallet, N.; Micklem, B.R.; Henny, P.; Brown, M.T.; Williams, C.; Bolam, J.P.; Nakamura, K.C.; Magill, P.J. Dichotomous organization of the external globus pallidus. Neuron, 2012, 74(6), 1075-1086. doi: 10.1016/j.neuron.2012.04.027 PMID: 22726837
- Mallet, N.; Schmidt, R.; Leventhal, D.; Chen, F.; Amer, N.; Boraud, T.; Berke, J.D. Arkypallidal cells send a stop signal to striatum. Neuron, 2016, 89(2), 308-316. doi: 10.1016/j.neuron.2015.12.017 PMID: 26777273
- Lilascharoen, V.; Wang, E.H.J.; Do, N.; Pate, S.C.; Tran, A.N.; Yoon, C.D.; Choi, J.H.; Wang, X.Y.; Pribiag, H.; Park, Y.G.; Chung, K.; Lim, B.K. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits. Nat. Neurosci., 2021, 24(4), 504-515. doi: 10.1038/s41593-021-00810-y PMID: 33723433
- Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci., 2014, 17(8), 1022-1030. doi: 10.1038/nn.3743 PMID: 25065439
- Picconi, B.; Bagetta, V.; Ghiglieri, V.; Paillè, V.; Di Filippo, M.; Pendolino, V.; Tozzi, A.; Giampà, C.; Fusco, F.R.; Sgobio, C.; Calabresi, P. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134(2), 375-387. doi: 10.1093/brain/awq342 PMID: 21183486
- Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001 PMID: 34102128
- Grillner, S.; El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev., 2020, 100(1), 271-320. doi: 10.1152/physrev.00015.2019 PMID: 31512990
Supplementary files
