Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures
- Authors: Coizet V.1, Tannir R.1, Pautrat A.1, Overton P.2
-
Affiliations:
- Grenoble Institute of Neuroscience, University Grenoble Alpes
- Department of Psychology, University of Sheffield
- Issue: Vol 22, No 9 (2024)
- Pages: 1473-1490
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644897
- DOI: https://doi.org/10.2174/1570159X21666230818154903
- ID: 644897
Cite item
Full Text
Abstract
The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animals repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.
About the authors
Véronique Coizet
Grenoble Institute of Neuroscience, University Grenoble Alpes
Author for correspondence.
Email: info@benthamscience.net
Racha Tannir
Grenoble Institute of Neuroscience, University Grenoble Alpes
Email: info@benthamscience.net
Arnaud Pautrat
Grenoble Institute of Neuroscience, University Grenoble Alpes
Email: info@benthamscience.net
Paul Overton
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
References
- Redgrave, P.; Prescott, T.J.; Gurney, K. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 1999, 89(4), 1009-1023. doi: 10.1016/S0306-4522(98)00319-4 PMID: 10362291
- Medina, L.; Reiner, A. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. Brain Behav. Evol., 1995, 46(4-5), 235-246. doi: 10.1159/000113277 PMID: 8564466
- Butler, A.B. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev., 1994, 19(1), 29-65. doi: 10.1016/0165-0173(94)90003-5 PMID: 8167659
- Wicht, H.; Northcutt, R.G. An immunohistochemical study of the telencephalon and the diencephalon in a Myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti. Brain Behav. Evol., 1994, 43(3), 140-161. doi: 10.1159/000113631 PMID: 7514941
- McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
- Hopkins, D.A.; Niessen, L.W. Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci. Lett., 1976, 2(5), 253-259. doi: 10.1016/0304-3940(76)90156-7 PMID: 19604767
- Parent, A.; Hazrati, L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev., 1995, 20(1), 91-127. doi: 10.1016/0165-0173(94)00007-C PMID: 7711769
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
- Gerfen, C.R.; Wilson, C.J. The basal ganglia. In: Handbook of Chemical Neuroanatomy Intergrated systems of the CNS; Swanson, L.W.; Bjorklund, A.; Hokfelt, T., Eds.; Elsvier: Amsterdam, 1996; Vol. 12, pp. 371-468.
- Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol., 1996, 50(4), 381-425. doi: 10.1016/S0301-0082(96)00042-1 PMID: 9004351
- Wickens, J. Basal ganglia: structure and computations. Network, 1997, 8(4), R77-R109. doi: 10.1088/0954-898X_8_4_001
- Deniau, J.M.; Chevalier, G. The lamellar organization of the rat substantia nigra pars reticulata: Distribution of projection neurons. Neuroscience, 1992, 46(2), 361-377. doi: 10.1016/0306-4522(92)90058-A PMID: 1542412
- Schneider, J.S. Interactions between the basal ganglia, the pontine parabrachial region, and the trigeminal system in cat. Neuroscience, 1986, 19(2), 411-425. doi: 10.1016/0306-4522(86)90271-X PMID: 3774149
- Spann, B.M.; Grofova, I. Nigropedunculopontine projection in the rat: An Anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J. Comp. Neurol., 1991, 311(3), 375-388. doi: 10.1002/cne.903110308 PMID: 1720145
- Albin, R.L.; Young, A.B.; Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci., 1989, 12(10), 366-375. doi: 10.1016/0166-2236(89)90074-X PMID: 2479133
- Nambu, A.; Tokuno, H.; Hamada, I.; Kita, H.; Imanishi, M.; Akazawa, T.; Ikeuchi, Y.; Hasegawa, N. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol., 2000, 84(1), 289-300. doi: 10.1152/jn.2000.84.1.289 PMID: 10899204
- Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27. doi: 10.1152/jn.1998.80.1.1 PMID: 9658025
- Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599. doi: 10.1126/science.275.5306.1593 PMID: 9054347
- Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975. doi: 10.1038/nrn2022 PMID: 17115078
- Isoda, M.; Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci., 2008, 28(28), 7209-7218. doi: 10.1523/JNEUROSCI.0487-08.2008 PMID: 18614691
- Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160. doi: 10.1016/0006-8993(94)91776-0 PMID: 8180831
- Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
- Pautrat, A.; Rolland, M.; Barthelemy, M.; Baunez, C.; Sinniger, V.; Piallat, B.; Savasta, M.; Overton, P.G.; David, O.; Coizet, V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. eLife, 2018, 7(7), e36607. doi: 10.7554/eLife.36607 PMID: 30149836
- Çavdar, S.; Özgür, M.; Çakmak, Y.Ö.; Kuvvet, Y.; Kunt, S.K. Sağlam, G. Afferent projections of the subthalamic nucleus in the rat: Emphasis on bilateral and interhemispheric connections. Acta Neurobiol. Exp. (Warsz.), 2018, 78(3), 251-263. doi: 10.21307/ane-2018-023 PMID: 30295682
- Smith, Y.; Bevan, M.D.; Shink, E.; Bolam, J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 1998, 86(2), 353-387. PMID: 9881853
- Cheruel, F.; Dormont, J.F.; Farin, D. Activity of neurons of the subthalamic nucleus in relation to motor performance in the cat. Exp. Brain Res., 1996, 108(2), 206-220. doi: 10.1007/BF00228095 PMID: 8815030
- Ryan, L.J.; Clark, K.B. The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp. Brain Res., 1991, 86(3), 641-651. doi: 10.1007/BF00230538 PMID: 1761097
- May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378. doi: 10.1016/S0079-6123(05)51011-2 PMID: 16221594
- Wilson, M.E.; Toyne, M.J. Retino-tectal and cortico-tectal projections inMacaca mulatta. Brain Res., 1970, 24(3), 395-406. doi: 10.1016/0006-8993(70)90181-2 PMID: 4099749
- Kelly, J.P.; Gilbert, C.D. The projections of different morphological types of ganglion cells in the cat retina. J. Comp. Neurol., 1975, 163(1), 65-80. doi: 10.1002/cne.901630105 PMID: 1159111
- Garey, L.J.; Jones, E.G.; Powell, T.P. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiatry, 1968, 31(2), 135-157. doi: 10.1136/jnnp.31.2.135 PMID: 5684020
- Stein, B.E.; Arigbede, M.O. Unimodal and multimodal response properties of neurons in the cats superior colliculus. Exp. Neurol., 1972, 36(1), 179-196. doi: 10.1016/0014-4886(72)90145-8 PMID: 4558413
- Siminoff, R.; Schwassmann, H.O.; Kruger, L. An electrophysiological study of the visual projection to the superior colliculus of the rat. J. Comp. Neurol., 1966, 127(4), 435-444. doi: 10.1002/cne.901270402 PMID: 5968989
- Feldon, S.; Feldon, P.; Kruger, L. Topography of the retinal projection upon the superior colliculus of the cat. Vision Res., 1970, 10(2), 135-143. doi: 10.1016/0042-6989(70)90111-2 PMID: 5440778
- Rosa, M.G.P.; Schmid, L.M. Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus. Vis. Neurosci., 1994, 11(6), 1037-1057. doi: 10.1017/S0952523800006878 PMID: 7841115
- Wurtz, R.H.; Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci., 1980, 3(1), 189-226. doi: 10.1146/annurev.ne.03.030180.001201 PMID: 6774653
- Hikosaka, O.; Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol., 1985, 53(1), 266-291. doi: 10.1152/jn.1985.53.1.266 PMID: 2983037
- Cowie, R.J.; Robinson, D.L. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 1994, 72(6), 2648-2664. doi: 10.1152/jn.1994.72.6.2648 PMID: 7897481
- Anderson, E.J.; Rees, G. Neural correlates of spatial orienting in the human superior colliculus. J. Neurophysiol., 2011, 106(5), 2273-2284. doi: 10.1152/jn.00286.2011 PMID: 21753026
- Gandhi, N.J.; Katnani, H.A. Motor functions of the superior colliculus. Annu. Rev. Neurosci., 2011, 34(1), 205-231. doi: 10.1146/annurev-neuro-061010-113728 PMID: 21456962
- DesJardin, J.T.; Holmes, A.L.; Forcelli, P.A.; Cole, C.E.; Gale, J.T.; Wellman, L.L.; Gale, K.; Malkova, L. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci., 2013, 33(1), 150-155. doi: 10.1523/JNEUROSCI.2924-12.2013 PMID: 23283329
- Wu, L.Q.; Niu, Y.Q.; Yang, J.; Wang, S.R. Tectal neurons signal impending collision of looming objects in the pigeon. Eur. J. Neurosci., 2005, 22(9), 2325-2331. doi: 10.1111/j.1460-9568.2005.04397.x PMID: 16262670
- Kang, H.J.; Li, X.H. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana. Neurosci. Bull., 2010, 26(4), 304-316. doi: 10.1007/s12264-010-0306-8 PMID: 20651812
- Zhao, X.; Liu, M.; Cang, J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron, 2014, 84(1), 202-213. doi: 10.1016/j.neuron.2014.08.037 PMID: 25220812
- Liu, Y.J.; Wang, Q.; Li, B. Neuronal responses to looming objects in the superior colliculus of the cat. Brain Behav. Evol., 2011, 77(3), 193-205. doi: 10.1159/000327045 PMID: 21546772
- Billington, J.; Wilkie, R.M.; Field, D.T.; Wann, J.P. Neural processing of imminent collision in humans. Proc. Biol. Sci., 2011, 278(1711), 1476-1481. doi: 10.1098/rspb.2010.1895 PMID: 20980303
- Comoli, E.; Das Neves Favaro, P.; Vautrelle, N.; Leriche, M.; Overton, P.G.; Redgrave, P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat., 2012, 6, 9. doi: 10.3389/fnana.2012.00009 PMID: 22514521
- Redgrave, P.; Odekunle, A.; Dean, P. Tectal cells of origin of predorsal bundle in rat: Location and segregation from ipsilateral descending pathway. Exp. Brain Res., 1986, 63(2), 279-293. doi: 10.1007/BF00236845 PMID: 3093259
- Redgrave, P.; Mitchell, I.J.; Dean, P. Descending projections from the superior colliculus in rat: A study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res., 1987, 68(1), 147-167. doi: 10.1007/BF00255241 PMID: 2826204
- Redgrave, P.; Dean, P.; Mitchell, I.J.; Odekunle, A.; Clark, A. The projection from superior colliculus to cuneiform area in the rat. Exp. Brain Res., 1988, 72(3), 611-625. doi: 10.1007/BF00250606 PMID: 2466683
- Chevalier, G.; Deniau, J.M. Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience, 1984, 12(2), 427-439. doi: 10.1016/0306-4522(84)90063-0 PMID: 6462457
- Krout, K.E.; Loewy, A.D.; Westby, G.W.; Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2001, 431(2), 198-216. doi: 10.1002/1096-9861(20010305)431:23.0.CO;2-8 PMID: 11170000
- Yamasaki, D.S.G.; Krauthamer, G.M. Somatosensory neurons projecting from the superior colliculus to the intralaminar thalamus in the rat. Brain Res., 1990, 523(2), 188-194. doi: 10.1016/0006-8993(90)91486-Z PMID: 2400905
- Hayes, L.M. Subcortical loops through the basal ganglia are orgainised into segregated channels., Doctoral dissertation, University of Sheffield, 2012.
- Pan, W.X.; Mao, T.; Dudman, J.T. Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain. Front. Neuroanat., 2010, 4, 147. doi: 10.3389/fnana.2010.00147 PMID: 21212837
- Schwab, M.; Agid, Y.; Glowinski, J.; Thoenen, H. Retrograde axonal transport of125I-tetanus toxin as a too for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum. Brain Res., 1977, 126(2), 211-224. doi: 10.1016/0006-8993(77)90722-3 PMID: 67875
- LeDoux, J.E.; Farb, C.; Ruggiero, D.A. Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J. Neurosci., 1990, 10(4), 1043-1054. doi: 10.1523/JNEUROSCI.10-04-01043.1990 PMID: 2158523
- LeDoux, J.E.; Farb, C.R.; Romanski, L.M. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci. Lett., 1991, 134(1), 139-144. doi: 10.1016/0304-3940(91)90526-Y PMID: 1815147
- Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226. doi: 10.1111/jnc.14804 PMID: 31245856
- Miyamoto, Y.; Katayama, S.; Shigematsu, N.; Nishi, A.; Fukuda, T. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct. Funct., 2018, 223(9), 4275-4291. doi: 10.1007/s00429-018-1749-3 PMID: 30203304
- Miyamoto, Y.; Nagayoshi, I.; Nishi, A.; Fukuda, T. Three divisions of the mouse caudal striatum differ in the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons, and composition of cholinergic and GABAergic interneurons. Brain Struct. Funct., 2019, 224(8), 2703-2716. doi: 10.1007/s00429-019-01928-3 PMID: 31375982
- Kim, H.F.; Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 2013, 79(5), 1001-1010. doi: 10.1016/j.neuron.2013.06.044 PMID: 23954031
- Kim, H.F.; Ghazizadeh, A.; Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat., 2014, 8, 120. doi: 10.3389/fnana.2014.00120 PMID: 25400553
- Menegas, W.; Akiti, K.; Amo, R.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci., 2018, 21(10), 1421-1430. doi: 10.1038/s41593-018-0222-1 PMID: 30177795
- Li, Z.; Wei, J.X.; Zhang, G.W.; Huang, J.J.; Zingg, B.; Wang, X.; Tao, H.W.; Zhang, L.I. Corticostriatal control of defense behavior in mice induced by auditory looming cues. Nat. Commun., 2021, 12(1), 1040. doi: 10.1038/s41467-021-21248-7 PMID: 33589613
- Tulloch, I.F.; Arbuthnott, G.W.; Wright, A.K. Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing techniques. J. Anat., 1978, 127(Pt 2), 425-441. PMID: 721701
- Redgrave, P.; Marrow, L.; Dean, P. Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels. Neuroscience, 1992, 50(3), 571-595. doi: 10.1016/0306-4522(92)90448-B PMID: 1279464
- Coizet, V.; Comoli, E.; Westby, G.W.M.; Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: An electrophysiological investigation in the rat. Eur. J. Neurosci., 2003, 17(1), 28-40. doi: 10.1046/j.1460-9568.2003.02415.x PMID: 12534966
- Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
- Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
- Huang, M.; Li, D.; Cheng, X.; Pei, Q.; Xie, Z.; Gu, H.; Zhang, X.; Chen, Z.; Liu, A.; Wang, Y.; Sun, F.; Li, Y.; Zhang, J.; He, M.; Xie, Y.; Zhang, F.; Qi, X.; Shang, C.; Cao, P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat. Commun., 2021, 2012(1), 4409. doi: 10.1038/s41467-021-24696-3
- Solié, C.; Contestabile, A.; Espinosa, P.; Musardo, S.; Bariselli, S.; Huber, C.; Carleton, A.; Bellone, C. Superior colliculus to VTA pathway controls orienting response and influences social interaction in mice. Nat. Commun., 2022, 13(1), 817. doi: 10.1038/s41467-022-28512-4 PMID: 35145124
- McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234. doi: 10.1016/j.neuroscience.2005.11.015 PMID: 16361067
- May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: A pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587. doi: 10.1111/j.1460-9568.2008.06596.x PMID: 19175405
- Vautrelle, N.; Coizet, V.; Leriche, M.; Dahan, L.; Schulz, J.M.; Zhang, Y.F.; Zeghbib, A.; Overton, P.G.; Bracci, E.; Redgrave, P.; Reynolds, J.N.J. Sensory reinforced corticostriatal plasticity. Curr. Neuropharmacol., 2024, 22(9), 1513-1527.
- Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol., 2006, 57(1), 87-115. doi: 10.1146/annurev.psych.56.091103.070229 PMID: 16318590
- Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
- Westlund, K.N.; Bowker, R.M.; Ziegler, M.G.; Coulter, J.D. Noradrenergic projections to the spinal cord of the rat. Brain Res., 1983, 263(1), 15-31. doi: 10.1016/0006-8993(83)91196-4 PMID: 6839168
- Ren, K.; Dubner, R. Descending control mechanisms. The Senses: A Comprehensive Reference, 2008, 723-762.
- Norgren, R.; Leonard, C.M. Ascending central gustatory pathways. J. Comp. Neurol., 1973, 150(2), 217-237. doi: 10.1002/cne.901500208 PMID: 4723066
- Weiss, M.S.; Victor, J.D.; Di Lorenzo, P.M. Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract. J. Neurophysiol., 2014, 111(8), 1655-1670. doi: 10.1152/jn.00643.2013 PMID: 24381029
- Arima, Y.; Yokota, S.; Fujitani, M. Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci. Rep., 2019, 9(1), 2830. doi: 10.1038/s41598-019-39063-y PMID: 30808976
- Carter, M.E.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Genetic identification of a neural circuit that suppresses appetite. Nature, 2013, 503(7474), 111-114. doi: 10.1038/nature12596 PMID: 24121436
- Campos, C.A.; Bowen, A.J.; Schwartz, M.W.; Palmiter, R.D. Parabrachial CGRP neurons control meal termination. Cell Metab., 2016, 23(5), 811-820. doi: 10.1016/j.cmet.2016.04.006 PMID: 27166945
- Chamberlin, N.L.; Saper, C.B. Topographic organization of respiratory responses to glutamate microstimulation of the parabrachial nucleus in the rat. J. Neuro., 1992, 14(11 I), 6500-6510.
- Fuller, P.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol., 2011, 519(5), 933-956. doi: 10.1002/cne.22559 PMID: 21280045
- Kaur, S.; Pedersen, N.P.; Yokota, S.; Hur, E.E.; Fuller, P.M.; Lazarus, M.; Chamberlin, N.L.; Saper, C.B. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci., 2013, 33(18), 7627-7640. doi: 10.1523/JNEUROSCI.0173-13.2013 PMID: 23637157
- Saper, C.B. The house alarm. Cell Metab., 2016, 23(5), 754-755. doi: 10.1016/j.cmet.2016.04.021 PMID: 27166934
- Palmiter, R.D. The Parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci., 2018, 41(5), 280-293. doi: 10.1016/j.tins.2018.03.007 PMID: 29703377
- Allen, G.V.; Pronych, S.P. Trigeminal autonomic pathways involved in nociception-induced reflex cardiovascular responses. Brain Res., 1997, 754(1-2), 269-278. doi: 10.1016/S0006-8993(97)00091-7 PMID: 9134984
- Allen, G.V.; Barbrick, B.; Esser, M.J. Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res., 1996, 715(1-2), 125-135. doi: 10.1016/0006-8993(95)01580-9 PMID: 8739631
- Bernard, J.F.; Peschanski, M.; Besson, J.M. A possible spino (trigemino)-ponto-amygdaloid pathway for pain. Neurosci. Lett., 1989, 100(1-3), 83-88. doi: 10.1016/0304-3940(89)90664-2 PMID: 2474780
- Bernard, J.F.; Huang, G.F.; Besson, J.M. The parabrachial area: Electrophysiological evidence for an involvement in visceral nociceptive processes. J. Neurophysiol., 1994, 71(5), 1646-1660. doi: 10.1152/jn.1994.71.5.1646 PMID: 8064340
- Bester, H.; Menendez, L.; Besson, J.M.; Bernard, J.F. Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1995, 73(2), 568-585. doi: 10.1152/jn.1995.73.2.568 PMID: 7760119
- Klop, E.M.; Mouton, L.J.; Hulsebosch, R.; Boers, J.; Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience, 2005, 134(1), 189-197. doi: 10.1016/j.neuroscience.2005.03.035 PMID: 15953685
- Spike, R.C.; Puskár, Z.; Andrew, D.; Todd, A.J. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci., 2003, 18(9), 2433-2448. doi: 10.1046/j.1460-9568.2003.02981.x PMID: 14622144
- Bernard, J.F.; Besson, J.M. The spino(trigemino)pontoamygdaloid pathway: Electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1990, 63(3), 473-490. doi: 10.1152/jn.1990.63.3.473 PMID: 2329357
- Hunt, S.P.; Mantyh, P.W. The molecular dynamics of pain control. Nat. Rev. Neurosci., 2001, 2(2), 83-91. doi: 10.1038/35053509 PMID: 11252998
- Yasui, Y.; Saper, C.B.; Cechetto, D.F. Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J. Comp. Neurol., 1989, 290(4), 487-501. doi: 10.1002/cne.902900404 PMID: 2613940
- Deng, J.; Zhou, H.; Lin, J.K.; Shen, Z.X.; Chen, W.Z.; Wang, L.H.; Li, Q.; Mu, D.; Wei, Y.C.; Xu, X.H.; Sun, Y.G. The parabrachial nucleus directly channels spinal nociceptive signals to the intralaminar thalamic nuclei, but not the amygdala. Neuron, 2020, 107(5), 909-923.e6. doi: 10.1016/j.neuron.2020.06.017 PMID: 32649865
- Han, S.; Soleiman, M.T.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Elucidating an affective pain circuit that creates a threat memory. Cell, 2015, 162(2), 363-374. doi: 10.1016/j.cell.2015.05.057 PMID: 26186190
- Barik, A.; Thompson, J.H.; Seltzer, M.; Ghitani, N.; Chesler, A.T. A brainstem-spinal circuit controlling nocifensive behavior. Neuron, 2018, 100(6), 1491-1503.e3. doi: 10.1016/j.neuron.2018.10.037 PMID: 30449655
- Chen, J.Y.; Campos, C.A.; Jarvie, B.C.; Palmiter, R.D. Parabrachial CGRP neurons establish and sustain aversive taste memories. Neuron, 2018, 100(4), 891-899.e5. doi: 10.1016/j.neuron.2018.09.032 PMID: 30344042
- Gauriau, C.; Bernard, J.F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol., 2002, 87(2), 251-258. doi: 10.1113/eph8702357 PMID: 11856971
- Roeder, Z.; Chen, Q.; Davis, S.; Carlson, J.D.; Tupone, D.; Heinricher, M.M. Parabrachial complex links pain transmission to descending pain modulation. Pain, 2016, 157(12), 2697-2708. doi: 10.1097/j.pain.0000000000000688 PMID: 27657698
- Campos, C.A.; Bowen, A.J.; Roman, C.W.; Palmiter, R.D. Encoding of danger by parabrachial CGRP neurons. Nature, 2018, 555(7698), 617-622. doi: 10.1038/nature25511 PMID: 29562230
- Chiang, M.C.; Bowen, A.; Schier, L.A.; Tupone, D.; Uddin, O.; Heinricher, M.M. Parabrachial complex: A hub for pain and aversion. J. Neurosci., 2019, 39(42), 8225-8230. doi: 10.1523/JNEUROSCI.1162-19.2019 PMID: 31619491
- Hermanson, O.; Blomqvist, A. Preproenkephalin messenger RNA-expressing neurons in the rat parabrachial nucleus: subnuclear organization and projections to the intralaminar thalamus. Neuroscience, 1997, 81(3), 803-812. doi: 10.1016/S0306-4522(97)00241-8 PMID: 9316029
- Krout, K.E.; Jansen, A.S.P.; Loewy, A.D. Periaqueductal gray matter projection to the parabrachial nucleus in rat. J. Comp. Neurol., 1998, 401(4), 437-454. doi: 10.1002/(SICI)1096-9861(19981130)401:43.0.CO;2-5 PMID: 9826272
- Krout, K.E.; Loewy, A.D. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2000, 428(3), 475-494. doi: 10.1002/1096-9861(20001218)428:33.0.CO;2-9 PMID: 11074446
- Saper, C.B. The spinoparabrachial pathway: Shedding new light on an old path. J. Comp. Neurol., 1995, 353(4), 477-479. doi: 10.1002/cne.903530402 PMID: 7759611
- Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Brain Res. Rev., 1984, 7(3), 229-259. doi: 10.1016/0165-0173(84)90012-2 PMID: 6478256
- Esser, M.J.; Pronych, S.P.; Allen, G.V. Trigeminal-reticular connections: Possible pathways for nociception-induced cardiovascular reflex responses in the rat. J. Comp. Neurol., 1998, 391(4), 526-544. PMID: 9486829
- Benarroch, E.E. Parabrachial nuclear complex. Neurology, 2016, 86(7), 676-683. doi: 10.1212/WNL.0000000000002393 PMID: 26791152
- Bourgeais, L.; Monconduit, L.; Villanueva, L.; Bernard, J.F. Parabrachial internal lateral neurons convey nociceptive messages from the deep laminas of the dorsal horn to the intralaminar thalamus. J. Neurosci., 2001, 21(6), 2159-2165. doi: 10.1523/JNEUROSCI.21-06-02159.2001 PMID: 11245700
- Bernard, J.F.; Dallel, R.; Raboisson, P.; Villanueva, L.; Bars, D.L. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal graye. A PHA-L study in the rat. J. Comp. Neurol., 1995, 353(4), 480-505. doi: 10.1002/cne.903530403 PMID: 7759612
- Pauli, J.L.; Chen, J.Y.; Basiri, M.L.; Park, S.; Carter, M.E.; Sanz, E.; McKnight, G.S.; Stuber, G.D.; Palmiter, R.D. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife, 2022, 11, e81868. doi: 10.7554/eLife.81868 PMID: 36317965
- McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738.e4. doi: 10.1016/j.neuron.2021.03.017 PMID: 33823137
- Freeman, A.S.; Bunney, B.S. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res., 1987, 405(1), 46-55. doi: 10.1016/0006-8993(87)90988-7 PMID: 3032350
- Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res., 1997, 759(2), 251-258. doi: 10.1016/S0006-8993(97)00265-5 PMID: 9221945
- Schultz, W. Reward signaling by dopamine neurons. Neuroscientist, 2001, 7(4), 293-302. doi: 10.1177/107385840100700406 PMID: 11488395
- Schultz, W.; Romo, R. Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. J. Neurophysiol., 1987, 57(1), 201-217. doi: 10.1152/jn.1987.57.1.201 PMID: 3559672
- Coizet, V.; Dommett, E.J.; Redgrave, P.; Overton, P.G. Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience, 2006, 139(4), 1479-1493. doi: 10.1016/j.neuroscience.2006.01.030 PMID: 16516396
- Ungless, M.A.; Magill, P.J.; Bolam, J.P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 2004, 303(5666), 2040-2042. doi: 10.1126/science.1093360 PMID: 15044807
- Coizet, V.; Dommett, E.J.; Klop, E.M.; Redgrave, P.; Overton, P.G. The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain dopaminergic neurons. Neuroscience, 2010, 168(1), 263-272. doi: 10.1016/j.neuroscience.2010.03.049 PMID: 20363297
- Huang, D.; Grady, F.S.; Peltekian, L.; Laing, J.J.; Geerling, J.C. Efferent projections of CGRP/Calca ‐expressing parabrachial neurons in mice. J. Comp. Neurol., 2021, 529(11), 2911-2957. doi: 10.1002/cne.25136 PMID: 33715169
- Yang, H.; de Jong, J.W.; Cerniauskas, I.; Peck, J.R.; Lim, B.K.; Gong, H.; Fields, H.L.; Lammel, S. Pain modulates dopamine neurons via a spinalparabrachialmesencephalic circuit. Nat. Neurosci., 2021, 24(10), 1402-1413. doi: 10.1038/s41593-021-00903-8 PMID: 34373644
- Zhang, L.; Wang, J.; Niu, C.; Zhang, Y.; Zhu, T.; Huang, D.; Ma, J.; Sun, H.; Gamper, N.; Du, X.; Zhang, H. Activation of parabrachial nucleus - ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice. Cell Rep., 2021, 37(5), 109936. doi: 10.1016/j.celrep.2021.109936 PMID: 34731609
- Kaufling, J.; Veinante, P.; Pawlowski, S.A.; Freund-Mercier, M.J.; Barrot, M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J. Comp. Neurol., 2009, 513(6), 597-621. doi: 10.1002/cne.21983 PMID: 19235223
- Li, H.; Vento, P.J.; Parrilla-Carrero, J.; Pullmann, D.; Chao, Y.S.; Eid, M.; Jhou, T.C. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron, 2019, 104(5), 987-999.e4. doi: 10.1016/j.neuron.2019.08.040 PMID: 31627985
- Kelland, M.D.; Freeman, A.S.; Rubin, J.; Chiodo, L.A. Ascending afferent regulation of rat midbrain dopamine neurons. Brain Res. Bull., 1993, 31(5), 539-546. doi: 10.1016/0361-9230(93)90121-Q PMID: 8495379
- Sun, L.; Liu, R.; Guo, F.; Wen, M.; Ma, X.; Li, K.; Sun, H.; Xu, C.; Li, Y.; Wu, M.; Zhu, Z.; Li, X.; Yu, Y.; Chen, Z.; Li, X.; Duan, S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat. Commun., 2020, 11(1), 5974. doi: 10.1038/s41467-020-19767-w PMID: 33239627
- Saper, C.B.; Loewy, A.D. Efferent connections of the parabrachial nucleus in the rat. Brain Res., 1980, 197(2), 291-317. doi: 10.1016/0006-8993(80)91117-8 PMID: 7407557
- Halsell, C.B. Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J. Comp. Neurol., 1992, 317(1), 57-78. doi: 10.1002/cne.903170105 PMID: 1374087
- Al Tannir, R.; Pautrat, A.; Baufreton, J.; Overton, P.G.; Coizet, V. The subthalamic nucleus: A hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol., 2022, 2022 Online ahead of print doi: 10.2174/1570159X20666220718113548 PMID: 35850655
- Jahanshahi, M.; Obeso, I.; Baunez, C.; Alegre, M.; Krack, P. Parkinsons disease, the subthalamic nucleus, inhibition, and impulsivity. Mov. Disord., 2015, 30(2), 128-140. doi: 10.1002/mds.26049 PMID: 25297382
- Carrive, P. The periaqueductal gray and defensive behavior: Functional representation and neuronal organization. Behav. Brain Res., 1993, 58(1-2), 27-47. doi: 10.1016/0166-4328(93)90088-8 PMID: 8136048
- Bandler, R.; Shipley, M.T. Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends Neurosci., 1994, 17(9), 379-389. doi: 10.1016/0166-2236(94)90047-7 PMID: 7817403
- Koutsikou, S.; Apps, R.; Lumb, B.M. Top down control of spinal sensorimotor circuits essential for survival. J. Physiol., 2017, 595(13), 4151-4158. doi: 10.1113/JP273360 PMID: 28294351
- Silva, C.; McNaughton, N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog. Neurobiol., 2019, 177, 33-72. doi: 10.1016/j.pneurobio.2019.02.001 PMID: 30786258
- Keay, K.A.; Bandler, R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev., 2001, 25(7-8), 669-678. doi: 10.1016/S0149-7634(01)00049-5 PMID: 11801292
- Keay, K.A.; Crowfoot, L.J.; Floyd, N.S.; Henderson, L.A.; Christie, M.J.; Bandler, R. Cardiovascular effects of microinjections of opioid agonists into the Depressor Region of the ventrolateral periaqueductal gray region. Brain Res., 1997, 762(1-2), 61-71. doi: 10.1016/S0006-8993(97)00285-0 PMID: 9262159
- Tovote, P.; Esposito, M.S.; Botta, P.; Chaudun, F.; Fadok, J.P.; Markovic, M.; Wolff, S.B.E.; Ramakrishnan, C.; Fenno, L.; Deisseroth, K.; Herry, C.; Arber, S.; Lüthi, A. Midbrain circuits for defensive behaviour. Nature, 2016, 534(7606), 206-212. doi: 10.1038/nature17996 PMID: 27279213
- La-Vu, M.Q.; Sethi, E.; Maesta-Pereira, S.; Schuette, P.J.; Tobias, B.C.; Reis, F.M.C.V.; Wang, W.; Torossian, A.; Bishop, A.; Leonard, S.J.; Lin, L.; Cahill, C.M.; Adhikari, A. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. eLife, 2022, 11, e77115. doi: 10.7554/eLife.77115 PMID: 35674316
- Tracey, I.; Ploghaus, A.; Gati, J.S.; Clare, S.; Smith, S.; Menon, R.S.; Matthews, P.M. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci., 2002, 22(7), 2748-2752. doi: 10.1523/JNEUROSCI.22-07-02748.2002 PMID: 11923440
- Jürgens, U. The neural control of vocalization in mammals: A review. J. Voice, 2009, 23(1), 1-10. doi: 10.1016/j.jvoice.2007.07.005 PMID: 18207362
- Paterson, D.J. Defining the neurocircuitry of exercise hyperpnoea. J. Physiol., 2014, 592(3), 433-444. doi: 10.1113/jphysiol.2013.261586 PMID: 23918772
- Subramanian, H.H. Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo. J. Physiol., 2013, 591(1), 109-122. doi: 10.1113/jphysiol.2012.245217 PMID: 23129795
- Faull, O.K.; Subramanian, H.H.; Ezra, M.; Pattinson, K.T.S. The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. Neurosci. Biobehav. Rev., 2019, 98, 135-144. doi: 10.1016/j.neubiorev.2018.12.020 PMID: 30611797
- Bowery, N.G.; Hudson, A.L.; Price, G.W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience, 1987, 20(2), 365-383. doi: 10.1016/0306-4522(87)90098-4 PMID: 3035421
- Samineni, V.K.; Grajales-Reyes, J.G.; Copits, B.A.; OBrian, D.E.; Trigg, S.L.; Gomez, A.M.; Bruchas, M.R.; Gereau, R.W. Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro, 2017, 4(2) doi: 10.1523/ENEURO.0129-16.2017
- McNally, G.P.; Johansen, J.P.; Blair, H.T. Placing prediction into the fear circuit. Trends Neurosci., 2011, 34(6), 283-292. doi: 10.1016/j.tins.2011.03.005 PMID: 21549434
- Wright, K.M.; McDannald, M.A. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. eLife, 2019, 8, e45013. doi: 10.7554/eLife.45013 PMID: 30843787
- Yeh, L.F.; Ozawa, T.; Johansen, J.P. Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Mol. Brain, 2021, 14(1), 136. doi: 10.1186/s13041-021-00844-0 PMID: 34496926
- Krout, K.E.; Loewy, A.D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2000, 424(1), 111-141. doi: 10.1002/1096-9861(20000814)424:13.0.CO;2-3 PMID: 10888743
- Smith, Y.; Raju, D.V.; Pare, J.F.; Sidibe, M. The thalamostriatal system: A highly specific network of the basal ganglia circuitry. Trends Neurosci., 2004, 27(9), 520-527. doi: 10.1016/j.tins.2004.07.004 PMID: 15331233
- Vertes, R.P.; Hoover, W.B. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J. Comp. Neurol., 2008, 508(2), 212-237. doi: 10.1002/cne.21679 PMID: 18311787
- Cameron, A.A.; Khan, I.A.; Westlund, K.N.; Willis, W.D. The efferent projections of the periaqueductal gray in the rat: APhaseolus vulgaris-leucoagglutinin study. II. Descending projections. J. Comp. Neurol., 1995, 351(4), 585-601. doi: 10.1002/cne.903510408 PMID: 7721985
- Geisler, S.; Zahm, D.S. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J. Comp. Neurol., 2005, 490(3), 270-294. doi: 10.1002/cne.20668 PMID: 16082674
- Geisler, S.; Derst, C.; Veh, R.W.; Zahm, D.S. Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci., 2007, 27(21), 5730-5743. doi: 10.1523/JNEUROSCI.0012-07.2007 PMID: 17522317
- Kender, R.G.; Harte, S.E.; Munn, E.M.; Borszcz, G.S. Affective analgesia following muscarinic activation of the ventral tegmental area in rats. J. Pain, 2008, 9(7), 597-605. doi: 10.1016/j.jpain.2008.01.334 PMID: 18387853
- Li, C.; Sugam, J.A.; Lowery-Gionta, E.G.; McElligott, Z.A.; McCall, N.M.; Lopez, A.J.; McKlveen, J.M.; Pleil, K.E.; Kash, T.L. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: A role in regulation of pain. Neuropsychopharmacology, 2016, 41(8), 2122-2132. doi: 10.1038/npp.2016.12 PMID: 26792442
- Pezze, M.; Feldon, J. Mesolimbic dopaminergic pathways in fear conditioning. Prog. Neurobiol., 2004, 74(5), 301-320. doi: 10.1016/j.pneurobio.2004.09.004 PMID: 15582224
- Tan, K.R.; Yvon, C.; Turiault, M.; Mirzabekov, J.J.; Doehner, J.; Labouèbe, G.; Deisseroth, K.; Tye, K.M.; Lüscher, C. GABA neurons of the VTA drive conditioned place aversion. Neuron, 2012, 73(6), 1173-1183. doi: 10.1016/j.neuron.2012.02.015 PMID: 22445344
- Ntamati, N.R.; Creed, M.; Achargui, R.; Lüscher, C. Correction: Periaqueductal efferents to dopamine and GABA neurons of the VTA. PLoS One, 2019, 14(7), e0219476. doi: 10.1371/journal.pone.0219476 PMID: 31269079
- Suckow, S.K.; Deichsel, E.L.; Ingram, S.L.; Morgan, M.M.; Aicher, S.A. Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways. Synapse, 2013, 67(2), 94-108. doi: 10.1002/syn.21624 PMID: 23152302
- Omelchenko, N.; Sesack, S.R. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J. Neurosci. Res., 2010, 88(5), 981-991. PMID: 19885830
- Waung, M.W.; Margolis, E.B.; Charbit, A.R.; Fields, H.L. A Midbrain circuit that mediates headache aversiveness in rats. Cell Rep., 2019, 28(11), 2739-2747.e4. doi: 10.1016/j.celrep.2019.08.009 PMID: 31509737
- Goodale, M.A. How (and why) the visual control of action differs from visual perception. Proc. Biol. Sci., 2014, 281(1785), 20140337. doi: 10.1098/rspb.2014.0337 PMID: 24789899
Supplementary files
