Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures


Cite item

Full Text

Abstract

The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animal’s repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.

About the authors

Véronique Coizet

Grenoble Institute of Neuroscience, University Grenoble Alpes

Author for correspondence.
Email: info@benthamscience.net

Racha Tannir

Grenoble Institute of Neuroscience, University Grenoble Alpes

Email: info@benthamscience.net

Arnaud Pautrat

Grenoble Institute of Neuroscience, University Grenoble Alpes

Email: info@benthamscience.net

Paul Overton

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

References

  1. Redgrave, P.; Prescott, T.J.; Gurney, K. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 1999, 89(4), 1009-1023. doi: 10.1016/S0306-4522(98)00319-4 PMID: 10362291
  2. Medina, L.; Reiner, A. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. Brain Behav. Evol., 1995, 46(4-5), 235-246. doi: 10.1159/000113277 PMID: 8564466
  3. Butler, A.B. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev., 1994, 19(1), 29-65. doi: 10.1016/0165-0173(94)90003-5 PMID: 8167659
  4. Wicht, H.; Northcutt, R.G. An immunohistochemical study of the telencephalon and the diencephalon in a Myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti. Brain Behav. Evol., 1994, 43(3), 140-161. doi: 10.1159/000113631 PMID: 7514941
  5. McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
  6. Hopkins, D.A.; Niessen, L.W. Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci. Lett., 1976, 2(5), 253-259. doi: 10.1016/0304-3940(76)90156-7 PMID: 19604767
  7. Parent, A.; Hazrati, L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev., 1995, 20(1), 91-127. doi: 10.1016/0165-0173(94)00007-C PMID: 7711769
  8. Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
  9. Gerfen, C.R.; Wilson, C.J. The basal ganglia. In: Handbook of Chemical Neuroanatomy – Intergrated systems of the CNS; Swanson, L.W.; Bjorklund, A.; Hokfelt, T., Eds.; Elsvier: Amsterdam, 1996; Vol. 12, pp. 371-468.
  10. Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol., 1996, 50(4), 381-425. doi: 10.1016/S0301-0082(96)00042-1 PMID: 9004351
  11. Wickens, J. Basal ganglia: structure and computations. Network, 1997, 8(4), R77-R109. doi: 10.1088/0954-898X_8_4_001
  12. Deniau, J.M.; Chevalier, G. The lamellar organization of the rat substantia nigra pars reticulata: Distribution of projection neurons. Neuroscience, 1992, 46(2), 361-377. doi: 10.1016/0306-4522(92)90058-A PMID: 1542412
  13. Schneider, J.S. Interactions between the basal ganglia, the pontine parabrachial region, and the trigeminal system in cat. Neuroscience, 1986, 19(2), 411-425. doi: 10.1016/0306-4522(86)90271-X PMID: 3774149
  14. Spann, B.M.; Grofova, I. Nigropedunculopontine projection in the rat: An Anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J. Comp. Neurol., 1991, 311(3), 375-388. doi: 10.1002/cne.903110308 PMID: 1720145
  15. Albin, R.L.; Young, A.B.; Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci., 1989, 12(10), 366-375. doi: 10.1016/0166-2236(89)90074-X PMID: 2479133
  16. Nambu, A.; Tokuno, H.; Hamada, I.; Kita, H.; Imanishi, M.; Akazawa, T.; Ikeuchi, Y.; Hasegawa, N. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol., 2000, 84(1), 289-300. doi: 10.1152/jn.2000.84.1.289 PMID: 10899204
  17. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27. doi: 10.1152/jn.1998.80.1.1 PMID: 9658025
  18. Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599. doi: 10.1126/science.275.5306.1593 PMID: 9054347
  19. Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975. doi: 10.1038/nrn2022 PMID: 17115078
  20. Isoda, M.; Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci., 2008, 28(28), 7209-7218. doi: 10.1523/JNEUROSCI.0487-08.2008 PMID: 18614691
  21. Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160. doi: 10.1016/0006-8993(94)91776-0 PMID: 8180831
  22. Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
  23. Pautrat, A.; Rolland, M.; Barthelemy, M.; Baunez, C.; Sinniger, V.; Piallat, B.; Savasta, M.; Overton, P.G.; David, O.; Coizet, V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. eLife, 2018, 7(7), e36607. doi: 10.7554/eLife.36607 PMID: 30149836
  24. Çavdar, S.; Özgür, M.; Çakmak, Y.Ö.; Kuvvet, Y.; Kunt, S.K. Sağlam, G. Afferent projections of the subthalamic nucleus in the rat: Emphasis on bilateral and interhemispheric connections. Acta Neurobiol. Exp. (Warsz.), 2018, 78(3), 251-263. doi: 10.21307/ane-2018-023 PMID: 30295682
  25. Smith, Y.; Bevan, M.D.; Shink, E.; Bolam, J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 1998, 86(2), 353-387. PMID: 9881853
  26. Cheruel, F.; Dormont, J.F.; Farin, D. Activity of neurons of the subthalamic nucleus in relation to motor performance in the cat. Exp. Brain Res., 1996, 108(2), 206-220. doi: 10.1007/BF00228095 PMID: 8815030
  27. Ryan, L.J.; Clark, K.B. The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp. Brain Res., 1991, 86(3), 641-651. doi: 10.1007/BF00230538 PMID: 1761097
  28. May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378. doi: 10.1016/S0079-6123(05)51011-2 PMID: 16221594
  29. Wilson, M.E.; Toyne, M.J. Retino-tectal and cortico-tectal projections inMacaca mulatta. Brain Res., 1970, 24(3), 395-406. doi: 10.1016/0006-8993(70)90181-2 PMID: 4099749
  30. Kelly, J.P.; Gilbert, C.D. The projections of different morphological types of ganglion cells in the cat retina. J. Comp. Neurol., 1975, 163(1), 65-80. doi: 10.1002/cne.901630105 PMID: 1159111
  31. Garey, L.J.; Jones, E.G.; Powell, T.P. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiatry, 1968, 31(2), 135-157. doi: 10.1136/jnnp.31.2.135 PMID: 5684020
  32. Stein, B.E.; Arigbede, M.O. Unimodal and multimodal response properties of neurons in the cat’s superior colliculus. Exp. Neurol., 1972, 36(1), 179-196. doi: 10.1016/0014-4886(72)90145-8 PMID: 4558413
  33. Siminoff, R.; Schwassmann, H.O.; Kruger, L. An electrophysiological study of the visual projection to the superior colliculus of the rat. J. Comp. Neurol., 1966, 127(4), 435-444. doi: 10.1002/cne.901270402 PMID: 5968989
  34. Feldon, S.; Feldon, P.; Kruger, L. Topography of the retinal projection upon the superior colliculus of the cat. Vision Res., 1970, 10(2), 135-143. doi: 10.1016/0042-6989(70)90111-2 PMID: 5440778
  35. Rosa, M.G.P.; Schmid, L.M. Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus. Vis. Neurosci., 1994, 11(6), 1037-1057. doi: 10.1017/S0952523800006878 PMID: 7841115
  36. Wurtz, R.H.; Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci., 1980, 3(1), 189-226. doi: 10.1146/annurev.ne.03.030180.001201 PMID: 6774653
  37. Hikosaka, O.; Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol., 1985, 53(1), 266-291. doi: 10.1152/jn.1985.53.1.266 PMID: 2983037
  38. Cowie, R.J.; Robinson, D.L. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 1994, 72(6), 2648-2664. doi: 10.1152/jn.1994.72.6.2648 PMID: 7897481
  39. Anderson, E.J.; Rees, G. Neural correlates of spatial orienting in the human superior colliculus. J. Neurophysiol., 2011, 106(5), 2273-2284. doi: 10.1152/jn.00286.2011 PMID: 21753026
  40. Gandhi, N.J.; Katnani, H.A. Motor functions of the superior colliculus. Annu. Rev. Neurosci., 2011, 34(1), 205-231. doi: 10.1146/annurev-neuro-061010-113728 PMID: 21456962
  41. DesJardin, J.T.; Holmes, A.L.; Forcelli, P.A.; Cole, C.E.; Gale, J.T.; Wellman, L.L.; Gale, K.; Malkova, L. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci., 2013, 33(1), 150-155. doi: 10.1523/JNEUROSCI.2924-12.2013 PMID: 23283329
  42. Wu, L.Q.; Niu, Y.Q.; Yang, J.; Wang, S.R. Tectal neurons signal impending collision of looming objects in the pigeon. Eur. J. Neurosci., 2005, 22(9), 2325-2331. doi: 10.1111/j.1460-9568.2005.04397.x PMID: 16262670
  43. Kang, H.J.; Li, X.H. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana. Neurosci. Bull., 2010, 26(4), 304-316. doi: 10.1007/s12264-010-0306-8 PMID: 20651812
  44. Zhao, X.; Liu, M.; Cang, J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron, 2014, 84(1), 202-213. doi: 10.1016/j.neuron.2014.08.037 PMID: 25220812
  45. Liu, Y.J.; Wang, Q.; Li, B. Neuronal responses to looming objects in the superior colliculus of the cat. Brain Behav. Evol., 2011, 77(3), 193-205. doi: 10.1159/000327045 PMID: 21546772
  46. Billington, J.; Wilkie, R.M.; Field, D.T.; Wann, J.P. Neural processing of imminent collision in humans. Proc. Biol. Sci., 2011, 278(1711), 1476-1481. doi: 10.1098/rspb.2010.1895 PMID: 20980303
  47. Comoli, E.; Das Neves Favaro, P.; Vautrelle, N.; Leriche, M.; Overton, P.G.; Redgrave, P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat., 2012, 6, 9. doi: 10.3389/fnana.2012.00009 PMID: 22514521
  48. Redgrave, P.; Odekunle, A.; Dean, P. Tectal cells of origin of predorsal bundle in rat: Location and segregation from ipsilateral descending pathway. Exp. Brain Res., 1986, 63(2), 279-293. doi: 10.1007/BF00236845 PMID: 3093259
  49. Redgrave, P.; Mitchell, I.J.; Dean, P. Descending projections from the superior colliculus in rat: A study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res., 1987, 68(1), 147-167. doi: 10.1007/BF00255241 PMID: 2826204
  50. Redgrave, P.; Dean, P.; Mitchell, I.J.; Odekunle, A.; Clark, A. The projection from superior colliculus to cuneiform area in the rat. Exp. Brain Res., 1988, 72(3), 611-625. doi: 10.1007/BF00250606 PMID: 2466683
  51. Chevalier, G.; Deniau, J.M. Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience, 1984, 12(2), 427-439. doi: 10.1016/0306-4522(84)90063-0 PMID: 6462457
  52. Krout, K.E.; Loewy, A.D.; Westby, G.W.; Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2001, 431(2), 198-216. doi: 10.1002/1096-9861(20010305)431:23.0.CO;2-8 PMID: 11170000
  53. Yamasaki, D.S.G.; Krauthamer, G.M. Somatosensory neurons projecting from the superior colliculus to the intralaminar thalamus in the rat. Brain Res., 1990, 523(2), 188-194. doi: 10.1016/0006-8993(90)91486-Z PMID: 2400905
  54. Hayes, L.M. Subcortical loops through the basal ganglia are orgainised into segregated channels., Doctoral dissertation, University of Sheffield, 2012.
  55. Pan, W.X.; Mao, T.; Dudman, J.T. Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain. Front. Neuroanat., 2010, 4, 147. doi: 10.3389/fnana.2010.00147 PMID: 21212837
  56. Schwab, M.; Agid, Y.; Glowinski, J.; Thoenen, H. Retrograde axonal transport of125I-tetanus toxin as a too for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum. Brain Res., 1977, 126(2), 211-224. doi: 10.1016/0006-8993(77)90722-3 PMID: 67875
  57. LeDoux, J.E.; Farb, C.; Ruggiero, D.A. Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J. Neurosci., 1990, 10(4), 1043-1054. doi: 10.1523/JNEUROSCI.10-04-01043.1990 PMID: 2158523
  58. LeDoux, J.E.; Farb, C.R.; Romanski, L.M. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci. Lett., 1991, 134(1), 139-144. doi: 10.1016/0304-3940(91)90526-Y PMID: 1815147
  59. Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226. doi: 10.1111/jnc.14804 PMID: 31245856
  60. Miyamoto, Y.; Katayama, S.; Shigematsu, N.; Nishi, A.; Fukuda, T. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct. Funct., 2018, 223(9), 4275-4291. doi: 10.1007/s00429-018-1749-3 PMID: 30203304
  61. Miyamoto, Y.; Nagayoshi, I.; Nishi, A.; Fukuda, T. Three divisions of the mouse caudal striatum differ in the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons, and composition of cholinergic and GABAergic interneurons. Brain Struct. Funct., 2019, 224(8), 2703-2716. doi: 10.1007/s00429-019-01928-3 PMID: 31375982
  62. Kim, H.F.; Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 2013, 79(5), 1001-1010. doi: 10.1016/j.neuron.2013.06.044 PMID: 23954031
  63. Kim, H.F.; Ghazizadeh, A.; Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat., 2014, 8, 120. doi: 10.3389/fnana.2014.00120 PMID: 25400553
  64. Menegas, W.; Akiti, K.; Amo, R.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci., 2018, 21(10), 1421-1430. doi: 10.1038/s41593-018-0222-1 PMID: 30177795
  65. Li, Z.; Wei, J.X.; Zhang, G.W.; Huang, J.J.; Zingg, B.; Wang, X.; Tao, H.W.; Zhang, L.I. Corticostriatal control of defense behavior in mice induced by auditory looming cues. Nat. Commun., 2021, 12(1), 1040. doi: 10.1038/s41467-021-21248-7 PMID: 33589613
  66. Tulloch, I.F.; Arbuthnott, G.W.; Wright, A.K. Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing techniques. J. Anat., 1978, 127(Pt 2), 425-441. PMID: 721701
  67. Redgrave, P.; Marrow, L.; Dean, P. Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels. Neuroscience, 1992, 50(3), 571-595. doi: 10.1016/0306-4522(92)90448-B PMID: 1279464
  68. Coizet, V.; Comoli, E.; Westby, G.W.M.; Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: An electrophysiological investigation in the rat. Eur. J. Neurosci., 2003, 17(1), 28-40. doi: 10.1046/j.1460-9568.2003.02415.x PMID: 12534966
  69. Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
  70. Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
  71. Huang, M.; Li, D.; Cheng, X.; Pei, Q.; Xie, Z.; Gu, H.; Zhang, X.; Chen, Z.; Liu, A.; Wang, Y.; Sun, F.; Li, Y.; Zhang, J.; He, M.; Xie, Y.; Zhang, F.; Qi, X.; Shang, C.; Cao, P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat. Commun., 2021, 2012(1), 4409. doi: 10.1038/s41467-021-24696-3
  72. Solié, C.; Contestabile, A.; Espinosa, P.; Musardo, S.; Bariselli, S.; Huber, C.; Carleton, A.; Bellone, C. Superior colliculus to VTA pathway controls orienting response and influences social interaction in mice. Nat. Commun., 2022, 13(1), 817. doi: 10.1038/s41467-022-28512-4 PMID: 35145124
  73. McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234. doi: 10.1016/j.neuroscience.2005.11.015 PMID: 16361067
  74. May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: A pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587. doi: 10.1111/j.1460-9568.2008.06596.x PMID: 19175405
  75. Vautrelle, N.; Coizet, V.; Leriche, M.; Dahan, L.; Schulz, J.M.; Zhang, Y.F.; Zeghbib, A.; Overton, P.G.; Bracci, E.; Redgrave, P.; Reynolds, J.N.J. Sensory reinforced corticostriatal plasticity. Curr. Neuropharmacol., 2024, 22(9), 1513-1527.
  76. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol., 2006, 57(1), 87-115. doi: 10.1146/annurev.psych.56.091103.070229 PMID: 16318590
  77. Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
  78. Westlund, K.N.; Bowker, R.M.; Ziegler, M.G.; Coulter, J.D. Noradrenergic projections to the spinal cord of the rat. Brain Res., 1983, 263(1), 15-31. doi: 10.1016/0006-8993(83)91196-4 PMID: 6839168
  79. Ren, K.; Dubner, R. Descending control mechanisms. The Senses: A Comprehensive Reference, 2008, 723-762.
  80. Norgren, R.; Leonard, C.M. Ascending central gustatory pathways. J. Comp. Neurol., 1973, 150(2), 217-237. doi: 10.1002/cne.901500208 PMID: 4723066
  81. Weiss, M.S.; Victor, J.D.; Di Lorenzo, P.M. Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract. J. Neurophysiol., 2014, 111(8), 1655-1670. doi: 10.1152/jn.00643.2013 PMID: 24381029
  82. Arima, Y.; Yokota, S.; Fujitani, M. Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci. Rep., 2019, 9(1), 2830. doi: 10.1038/s41598-019-39063-y PMID: 30808976
  83. Carter, M.E.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Genetic identification of a neural circuit that suppresses appetite. Nature, 2013, 503(7474), 111-114. doi: 10.1038/nature12596 PMID: 24121436
  84. Campos, C.A.; Bowen, A.J.; Schwartz, M.W.; Palmiter, R.D. Parabrachial CGRP neurons control meal termination. Cell Metab., 2016, 23(5), 811-820. doi: 10.1016/j.cmet.2016.04.006 PMID: 27166945
  85. Chamberlin, N.L.; Saper, C.B. Topographic organization of respiratory responses to glutamate microstimulation of the parabrachial nucleus in the rat. J. Neuro., 1992, 14(11 I), 6500-6510.
  86. Fuller, P.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol., 2011, 519(5), 933-956. doi: 10.1002/cne.22559 PMID: 21280045
  87. Kaur, S.; Pedersen, N.P.; Yokota, S.; Hur, E.E.; Fuller, P.M.; Lazarus, M.; Chamberlin, N.L.; Saper, C.B. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci., 2013, 33(18), 7627-7640. doi: 10.1523/JNEUROSCI.0173-13.2013 PMID: 23637157
  88. Saper, C.B. The house alarm. Cell Metab., 2016, 23(5), 754-755. doi: 10.1016/j.cmet.2016.04.021 PMID: 27166934
  89. Palmiter, R.D. The Parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci., 2018, 41(5), 280-293. doi: 10.1016/j.tins.2018.03.007 PMID: 29703377
  90. Allen, G.V.; Pronych, S.P. Trigeminal autonomic pathways involved in nociception-induced reflex cardiovascular responses. Brain Res., 1997, 754(1-2), 269-278. doi: 10.1016/S0006-8993(97)00091-7 PMID: 9134984
  91. Allen, G.V.; Barbrick, B.; Esser, M.J. Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res., 1996, 715(1-2), 125-135. doi: 10.1016/0006-8993(95)01580-9 PMID: 8739631
  92. Bernard, J.F.; Peschanski, M.; Besson, J.M. A possible spino (trigemino)-ponto-amygdaloid pathway for pain. Neurosci. Lett., 1989, 100(1-3), 83-88. doi: 10.1016/0304-3940(89)90664-2 PMID: 2474780
  93. Bernard, J.F.; Huang, G.F.; Besson, J.M. The parabrachial area: Electrophysiological evidence for an involvement in visceral nociceptive processes. J. Neurophysiol., 1994, 71(5), 1646-1660. doi: 10.1152/jn.1994.71.5.1646 PMID: 8064340
  94. Bester, H.; Menendez, L.; Besson, J.M.; Bernard, J.F. Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1995, 73(2), 568-585. doi: 10.1152/jn.1995.73.2.568 PMID: 7760119
  95. Klop, E.M.; Mouton, L.J.; Hulsebosch, R.; Boers, J.; Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience, 2005, 134(1), 189-197. doi: 10.1016/j.neuroscience.2005.03.035 PMID: 15953685
  96. Spike, R.C.; Puskár, Z.; Andrew, D.; Todd, A.J. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci., 2003, 18(9), 2433-2448. doi: 10.1046/j.1460-9568.2003.02981.x PMID: 14622144
  97. Bernard, J.F.; Besson, J.M. The spino(trigemino)pontoamygdaloid pathway: Electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1990, 63(3), 473-490. doi: 10.1152/jn.1990.63.3.473 PMID: 2329357
  98. Hunt, S.P.; Mantyh, P.W. The molecular dynamics of pain control. Nat. Rev. Neurosci., 2001, 2(2), 83-91. doi: 10.1038/35053509 PMID: 11252998
  99. Yasui, Y.; Saper, C.B.; Cechetto, D.F. Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J. Comp. Neurol., 1989, 290(4), 487-501. doi: 10.1002/cne.902900404 PMID: 2613940
  100. Deng, J.; Zhou, H.; Lin, J.K.; Shen, Z.X.; Chen, W.Z.; Wang, L.H.; Li, Q.; Mu, D.; Wei, Y.C.; Xu, X.H.; Sun, Y.G. The parabrachial nucleus directly channels spinal nociceptive signals to the intralaminar thalamic nuclei, but not the amygdala. Neuron, 2020, 107(5), 909-923.e6. doi: 10.1016/j.neuron.2020.06.017 PMID: 32649865
  101. Han, S.; Soleiman, M.T.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Elucidating an affective pain circuit that creates a threat memory. Cell, 2015, 162(2), 363-374. doi: 10.1016/j.cell.2015.05.057 PMID: 26186190
  102. Barik, A.; Thompson, J.H.; Seltzer, M.; Ghitani, N.; Chesler, A.T. A brainstem-spinal circuit controlling nocifensive behavior. Neuron, 2018, 100(6), 1491-1503.e3. doi: 10.1016/j.neuron.2018.10.037 PMID: 30449655
  103. Chen, J.Y.; Campos, C.A.; Jarvie, B.C.; Palmiter, R.D. Parabrachial CGRP neurons establish and sustain aversive taste memories. Neuron, 2018, 100(4), 891-899.e5. doi: 10.1016/j.neuron.2018.09.032 PMID: 30344042
  104. Gauriau, C.; Bernard, J.F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol., 2002, 87(2), 251-258. doi: 10.1113/eph8702357 PMID: 11856971
  105. Roeder, Z.; Chen, Q.; Davis, S.; Carlson, J.D.; Tupone, D.; Heinricher, M.M. Parabrachial complex links pain transmission to descending pain modulation. Pain, 2016, 157(12), 2697-2708. doi: 10.1097/j.pain.0000000000000688 PMID: 27657698
  106. Campos, C.A.; Bowen, A.J.; Roman, C.W.; Palmiter, R.D. Encoding of danger by parabrachial CGRP neurons. Nature, 2018, 555(7698), 617-622. doi: 10.1038/nature25511 PMID: 29562230
  107. Chiang, M.C.; Bowen, A.; Schier, L.A.; Tupone, D.; Uddin, O.; Heinricher, M.M. Parabrachial complex: A hub for pain and aversion. J. Neurosci., 2019, 39(42), 8225-8230. doi: 10.1523/JNEUROSCI.1162-19.2019 PMID: 31619491
  108. Hermanson, O.; Blomqvist, A. Preproenkephalin messenger RNA-expressing neurons in the rat parabrachial nucleus: subnuclear organization and projections to the intralaminar thalamus. Neuroscience, 1997, 81(3), 803-812. doi: 10.1016/S0306-4522(97)00241-8 PMID: 9316029
  109. Krout, K.E.; Jansen, A.S.P.; Loewy, A.D. Periaqueductal gray matter projection to the parabrachial nucleus in rat. J. Comp. Neurol., 1998, 401(4), 437-454. doi: 10.1002/(SICI)1096-9861(19981130)401:43.0.CO;2-5 PMID: 9826272
  110. Krout, K.E.; Loewy, A.D. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2000, 428(3), 475-494. doi: 10.1002/1096-9861(20001218)428:33.0.CO;2-9 PMID: 11074446
  111. Saper, C.B. The spinoparabrachial pathway: Shedding new light on an old path. J. Comp. Neurol., 1995, 353(4), 477-479. doi: 10.1002/cne.903530402 PMID: 7759611
  112. Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Brain Res. Rev., 1984, 7(3), 229-259. doi: 10.1016/0165-0173(84)90012-2 PMID: 6478256
  113. Esser, M.J.; Pronych, S.P.; Allen, G.V. Trigeminal-reticular connections: Possible pathways for nociception-induced cardiovascular reflex responses in the rat. J. Comp. Neurol., 1998, 391(4), 526-544. PMID: 9486829
  114. Benarroch, E.E. Parabrachial nuclear complex. Neurology, 2016, 86(7), 676-683. doi: 10.1212/WNL.0000000000002393 PMID: 26791152
  115. Bourgeais, L.; Monconduit, L.; Villanueva, L.; Bernard, J.F. Parabrachial internal lateral neurons convey nociceptive messages from the deep laminas of the dorsal horn to the intralaminar thalamus. J. Neurosci., 2001, 21(6), 2159-2165. doi: 10.1523/JNEUROSCI.21-06-02159.2001 PMID: 11245700
  116. Bernard, J.F.; Dallel, R.; Raboisson, P.; Villanueva, L.; Bars, D.L. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal graye. A PHA-L study in the rat. J. Comp. Neurol., 1995, 353(4), 480-505. doi: 10.1002/cne.903530403 PMID: 7759612
  117. Pauli, J.L.; Chen, J.Y.; Basiri, M.L.; Park, S.; Carter, M.E.; Sanz, E.; McKnight, G.S.; Stuber, G.D.; Palmiter, R.D. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife, 2022, 11, e81868. doi: 10.7554/eLife.81868 PMID: 36317965
  118. McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738.e4. doi: 10.1016/j.neuron.2021.03.017 PMID: 33823137
  119. Freeman, A.S.; Bunney, B.S. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res., 1987, 405(1), 46-55. doi: 10.1016/0006-8993(87)90988-7 PMID: 3032350
  120. Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res., 1997, 759(2), 251-258. doi: 10.1016/S0006-8993(97)00265-5 PMID: 9221945
  121. Schultz, W. Reward signaling by dopamine neurons. Neuroscientist, 2001, 7(4), 293-302. doi: 10.1177/107385840100700406 PMID: 11488395
  122. Schultz, W.; Romo, R. Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. J. Neurophysiol., 1987, 57(1), 201-217. doi: 10.1152/jn.1987.57.1.201 PMID: 3559672
  123. Coizet, V.; Dommett, E.J.; Redgrave, P.; Overton, P.G. Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience, 2006, 139(4), 1479-1493. doi: 10.1016/j.neuroscience.2006.01.030 PMID: 16516396
  124. Ungless, M.A.; Magill, P.J.; Bolam, J.P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 2004, 303(5666), 2040-2042. doi: 10.1126/science.1093360 PMID: 15044807
  125. Coizet, V.; Dommett, E.J.; Klop, E.M.; Redgrave, P.; Overton, P.G. The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain dopaminergic neurons. Neuroscience, 2010, 168(1), 263-272. doi: 10.1016/j.neuroscience.2010.03.049 PMID: 20363297
  126. Huang, D.; Grady, F.S.; Peltekian, L.; Laing, J.J.; Geerling, J.C. Efferent projections of CGRP/Calca ‐expressing parabrachial neurons in mice. J. Comp. Neurol., 2021, 529(11), 2911-2957. doi: 10.1002/cne.25136 PMID: 33715169
  127. Yang, H.; de Jong, J.W.; Cerniauskas, I.; Peck, J.R.; Lim, B.K.; Gong, H.; Fields, H.L.; Lammel, S. Pain modulates dopamine neurons via a spinal–parabrachial–mesencephalic circuit. Nat. Neurosci., 2021, 24(10), 1402-1413. doi: 10.1038/s41593-021-00903-8 PMID: 34373644
  128. Zhang, L.; Wang, J.; Niu, C.; Zhang, Y.; Zhu, T.; Huang, D.; Ma, J.; Sun, H.; Gamper, N.; Du, X.; Zhang, H. Activation of parabrachial nucleus - ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice. Cell Rep., 2021, 37(5), 109936. doi: 10.1016/j.celrep.2021.109936 PMID: 34731609
  129. Kaufling, J.; Veinante, P.; Pawlowski, S.A.; Freund-Mercier, M.J.; Barrot, M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J. Comp. Neurol., 2009, 513(6), 597-621. doi: 10.1002/cne.21983 PMID: 19235223
  130. Li, H.; Vento, P.J.; Parrilla-Carrero, J.; Pullmann, D.; Chao, Y.S.; Eid, M.; Jhou, T.C. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron, 2019, 104(5), 987-999.e4. doi: 10.1016/j.neuron.2019.08.040 PMID: 31627985
  131. Kelland, M.D.; Freeman, A.S.; Rubin, J.; Chiodo, L.A. Ascending afferent regulation of rat midbrain dopamine neurons. Brain Res. Bull., 1993, 31(5), 539-546. doi: 10.1016/0361-9230(93)90121-Q PMID: 8495379
  132. Sun, L.; Liu, R.; Guo, F.; Wen, M.; Ma, X.; Li, K.; Sun, H.; Xu, C.; Li, Y.; Wu, M.; Zhu, Z.; Li, X.; Yu, Y.; Chen, Z.; Li, X.; Duan, S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat. Commun., 2020, 11(1), 5974. doi: 10.1038/s41467-020-19767-w PMID: 33239627
  133. Saper, C.B.; Loewy, A.D. Efferent connections of the parabrachial nucleus in the rat. Brain Res., 1980, 197(2), 291-317. doi: 10.1016/0006-8993(80)91117-8 PMID: 7407557
  134. Halsell, C.B. Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J. Comp. Neurol., 1992, 317(1), 57-78. doi: 10.1002/cne.903170105 PMID: 1374087
  135. Al Tannir, R.; Pautrat, A.; Baufreton, J.; Overton, P.G.; Coizet, V. The subthalamic nucleus: A hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol., 2022, 2022 Online ahead of print doi: 10.2174/1570159X20666220718113548 PMID: 35850655
  136. Jahanshahi, M.; Obeso, I.; Baunez, C.; Alegre, M.; Krack, P. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov. Disord., 2015, 30(2), 128-140. doi: 10.1002/mds.26049 PMID: 25297382
  137. Carrive, P. The periaqueductal gray and defensive behavior: Functional representation and neuronal organization. Behav. Brain Res., 1993, 58(1-2), 27-47. doi: 10.1016/0166-4328(93)90088-8 PMID: 8136048
  138. Bandler, R.; Shipley, M.T. Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends Neurosci., 1994, 17(9), 379-389. doi: 10.1016/0166-2236(94)90047-7 PMID: 7817403
  139. Koutsikou, S.; Apps, R.; Lumb, B.M. Top down control of spinal sensorimotor circuits essential for survival. J. Physiol., 2017, 595(13), 4151-4158. doi: 10.1113/JP273360 PMID: 28294351
  140. Silva, C.; McNaughton, N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog. Neurobiol., 2019, 177, 33-72. doi: 10.1016/j.pneurobio.2019.02.001 PMID: 30786258
  141. Keay, K.A.; Bandler, R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev., 2001, 25(7-8), 669-678. doi: 10.1016/S0149-7634(01)00049-5 PMID: 11801292
  142. Keay, K.A.; Crowfoot, L.J.; Floyd, N.S.; Henderson, L.A.; Christie, M.J.; Bandler, R. Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor Region’ of the ventrolateral periaqueductal gray region. Brain Res., 1997, 762(1-2), 61-71. doi: 10.1016/S0006-8993(97)00285-0 PMID: 9262159
  143. Tovote, P.; Esposito, M.S.; Botta, P.; Chaudun, F.; Fadok, J.P.; Markovic, M.; Wolff, S.B.E.; Ramakrishnan, C.; Fenno, L.; Deisseroth, K.; Herry, C.; Arber, S.; Lüthi, A. Midbrain circuits for defensive behaviour. Nature, 2016, 534(7606), 206-212. doi: 10.1038/nature17996 PMID: 27279213
  144. La-Vu, M.Q.; Sethi, E.; Maesta-Pereira, S.; Schuette, P.J.; Tobias, B.C.; Reis, F.M.C.V.; Wang, W.; Torossian, A.; Bishop, A.; Leonard, S.J.; Lin, L.; Cahill, C.M.; Adhikari, A. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. eLife, 2022, 11, e77115. doi: 10.7554/eLife.77115 PMID: 35674316
  145. Tracey, I.; Ploghaus, A.; Gati, J.S.; Clare, S.; Smith, S.; Menon, R.S.; Matthews, P.M. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci., 2002, 22(7), 2748-2752. doi: 10.1523/JNEUROSCI.22-07-02748.2002 PMID: 11923440
  146. Jürgens, U. The neural control of vocalization in mammals: A review. J. Voice, 2009, 23(1), 1-10. doi: 10.1016/j.jvoice.2007.07.005 PMID: 18207362
  147. Paterson, D.J. Defining the neurocircuitry of exercise hyperpnoea. J. Physiol., 2014, 592(3), 433-444. doi: 10.1113/jphysiol.2013.261586 PMID: 23918772
  148. Subramanian, H.H. Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo. J. Physiol., 2013, 591(1), 109-122. doi: 10.1113/jphysiol.2012.245217 PMID: 23129795
  149. Faull, O.K.; Subramanian, H.H.; Ezra, M.; Pattinson, K.T.S. The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. Neurosci. Biobehav. Rev., 2019, 98, 135-144. doi: 10.1016/j.neubiorev.2018.12.020 PMID: 30611797
  150. Bowery, N.G.; Hudson, A.L.; Price, G.W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience, 1987, 20(2), 365-383. doi: 10.1016/0306-4522(87)90098-4 PMID: 3035421
  151. Samineni, V.K.; Grajales-Reyes, J.G.; Copits, B.A.; O’Brian, D.E.; Trigg, S.L.; Gomez, A.M.; Bruchas, M.R.; Gereau, R.W. Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro, 2017, 4(2) doi: 10.1523/ENEURO.0129-16.2017
  152. McNally, G.P.; Johansen, J.P.; Blair, H.T. Placing prediction into the fear circuit. Trends Neurosci., 2011, 34(6), 283-292. doi: 10.1016/j.tins.2011.03.005 PMID: 21549434
  153. Wright, K.M.; McDannald, M.A. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. eLife, 2019, 8, e45013. doi: 10.7554/eLife.45013 PMID: 30843787
  154. Yeh, L.F.; Ozawa, T.; Johansen, J.P. Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Mol. Brain, 2021, 14(1), 136. doi: 10.1186/s13041-021-00844-0 PMID: 34496926
  155. Krout, K.E.; Loewy, A.D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2000, 424(1), 111-141. doi: 10.1002/1096-9861(20000814)424:13.0.CO;2-3 PMID: 10888743
  156. Smith, Y.; Raju, D.V.; Pare, J.F.; Sidibe, M. The thalamostriatal system: A highly specific network of the basal ganglia circuitry. Trends Neurosci., 2004, 27(9), 520-527. doi: 10.1016/j.tins.2004.07.004 PMID: 15331233
  157. Vertes, R.P.; Hoover, W.B. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J. Comp. Neurol., 2008, 508(2), 212-237. doi: 10.1002/cne.21679 PMID: 18311787
  158. Cameron, A.A.; Khan, I.A.; Westlund, K.N.; Willis, W.D. The efferent projections of the periaqueductal gray in the rat: APhaseolus vulgaris-leucoagglutinin study. II. Descending projections. J. Comp. Neurol., 1995, 351(4), 585-601. doi: 10.1002/cne.903510408 PMID: 7721985
  159. Geisler, S.; Zahm, D.S. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J. Comp. Neurol., 2005, 490(3), 270-294. doi: 10.1002/cne.20668 PMID: 16082674
  160. Geisler, S.; Derst, C.; Veh, R.W.; Zahm, D.S. Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci., 2007, 27(21), 5730-5743. doi: 10.1523/JNEUROSCI.0012-07.2007 PMID: 17522317
  161. Kender, R.G.; Harte, S.E.; Munn, E.M.; Borszcz, G.S. Affective analgesia following muscarinic activation of the ventral tegmental area in rats. J. Pain, 2008, 9(7), 597-605. doi: 10.1016/j.jpain.2008.01.334 PMID: 18387853
  162. Li, C.; Sugam, J.A.; Lowery-Gionta, E.G.; McElligott, Z.A.; McCall, N.M.; Lopez, A.J.; McKlveen, J.M.; Pleil, K.E.; Kash, T.L. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: A role in regulation of pain. Neuropsychopharmacology, 2016, 41(8), 2122-2132. doi: 10.1038/npp.2016.12 PMID: 26792442
  163. Pezze, M.; Feldon, J. Mesolimbic dopaminergic pathways in fear conditioning. Prog. Neurobiol., 2004, 74(5), 301-320. doi: 10.1016/j.pneurobio.2004.09.004 PMID: 15582224
  164. Tan, K.R.; Yvon, C.; Turiault, M.; Mirzabekov, J.J.; Doehner, J.; Labouèbe, G.; Deisseroth, K.; Tye, K.M.; Lüscher, C. GABA neurons of the VTA drive conditioned place aversion. Neuron, 2012, 73(6), 1173-1183. doi: 10.1016/j.neuron.2012.02.015 PMID: 22445344
  165. Ntamati, N.R.; Creed, M.; Achargui, R.; Lüscher, C. Correction: Periaqueductal efferents to dopamine and GABA neurons of the VTA. PLoS One, 2019, 14(7), e0219476. doi: 10.1371/journal.pone.0219476 PMID: 31269079
  166. Suckow, S.K.; Deichsel, E.L.; Ingram, S.L.; Morgan, M.M.; Aicher, S.A. Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways. Synapse, 2013, 67(2), 94-108. doi: 10.1002/syn.21624 PMID: 23152302
  167. Omelchenko, N.; Sesack, S.R. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J. Neurosci. Res., 2010, 88(5), 981-991. PMID: 19885830
  168. Waung, M.W.; Margolis, E.B.; Charbit, A.R.; Fields, H.L. A Midbrain circuit that mediates headache aversiveness in rats. Cell Rep., 2019, 28(11), 2739-2747.e4. doi: 10.1016/j.celrep.2019.08.009 PMID: 31509737
  169. Goodale, M.A. How (and why) the visual control of action differs from visual perception. Proc. Biol. Sci., 2014, 281(1785), 20140337. doi: 10.1098/rspb.2014.0337 PMID: 24789899

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers