Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System
- Authors: Esposito M.1, Palermo S.1, Nahi Y.1, Tamietto M.2, Celeghin A.1
-
Affiliations:
- Department of Psychology, University of Torino
- Department of Psychology, University of Torin
- Issue: Vol 22, No 9 (2024)
- Pages: 1497-1512
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644906
- DOI: https://doi.org/10.2174/1570159X21666230831163052
- ID: 644906
Cite item
Full Text
Abstract
The ability of the brain to recognize and orient attention to relevant stimuli appearing in the visual field is highlighted by a tuning process, which involves modulating the early visual system by both cortical and subcortical brain areas. Selective attention is coordinated not only by the output of stimulus-based saliency maps but is also influenced by top-down cognitive factors, such as internal states, goals, or previous experiences. The basal ganglia system plays a key role in implicitly modulating the underlying mechanisms of selective attention, favouring the formation and maintenance of implicit sensory-motor memories that are capable of automatically modifying the output of priority maps in sensory-motor structures of the midbrain, such as the superior colliculus. The article presents an overview of the recent literature outlining the crucial contribution of several subcortical structures to the processing of different sources of salient stimuli. In detail, we will focus on how the mesencephalic- basal ganglia closed loops contribute to implicitly addressing and modulating selective attention to prioritized stimuli. We conclude by discussing implicit behavioural responses observed in clinical populations in which awareness is compromised at some level. Implicit (emergent) awareness in clinical conditions that can be accompanied by manifest anosognosic symptomatology (i.e., hemiplegia) or involving abnormal conscious processing of visual information (i.e., unilateral spatial neglect and blindsight) represents interesting neurocognitive "test cases" for inferences about mesencephalicbasal ganglia closed-loops involvement in the formation of implicit sensory-motor memories.
About the authors
Matteo Esposito
Department of Psychology, University of Torino
Email: info@benthamscience.net
Sara Palermo
Department of Psychology, University of Torino
Email: info@benthamscience.net
Ylenia Nahi
Department of Psychology, University of Torino
Email: info@benthamscience.net
Marco Tamietto
Department of Psychology, University of Torin
Email: info@benthamscience.net
Alessia Celeghin
Department of Psychology, University of Torino
Author for correspondence.
Email: info@benthamscience.net
References
- Itti, L.; Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 2000, 40(10-12), 1489-1506. doi: 10.1016/S0042-6989(99)00163-7 PMID: 10788654
- Itti, L.; Koch, C. Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging, 2001, 10(1), 161-169. doi: 10.1117/1.1333677
- Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci., 2001, 2(3), 194-203. doi: 10.1038/35058500 PMID: 11256080
- Lee, D.K.; Itti, L.; Koch, C.; Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci., 1999, 2(4), 375-381. doi: 10.1038/7286 PMID: 10204546
- Fecteau, J.; Munoz, D. Salience, relevance, and firing: A priority map for target selection. Trends Cogn. Sci., 2006, 10(8), 382-390. doi: 10.1016/j.tics.2006.06.011 PMID: 16843702
- Klink, P.C.; Jentgens, P.; Lorteije, J.A.M. Priority maps explain the roles of value, attention, and salience in goal-oriented behavior. J. Neurosci., 2014, 34(42), 13867-13869. doi: 10.1523/JNEUROSCI.3249-14.2014 PMID: 25319682
- Kim, A.J.; Anderson, B.A. How does threat modulate the motivational effects of reward on attention? Exp. Psychol., 2021, 68(3), 165-172. doi: 10.1027/1618-3169/a000521 PMID: 34711076
- Todd, R.M.; Manaligod, M.G.M. Implicit guidance of attention: The priority state space framework. Cortex, 2018, 102, 121-138. doi: 10.1016/j.cortex.2017.08.001 PMID: 28863855
- Joshua, M.; Adler, A.; Mitelman, R.; Vaadia, E.; Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci., 2008, 28(45), 11673-11684. doi: 10.1523/JNEUROSCI.3839-08.2008 PMID: 18987203
- Jiang, Y.V.; Won, B.Y.; Swallow, K.M. First saccadic eye movement reveals persistent attentional guidance by implicit learning. J. Exp. Psychol. Hum. Percept. Perform., 2014, 40(3), 1161-1173. doi: 10.1037/a0035961 PMID: 24512610
- Zhao, J.; Al-Aidroos, N.; Turk-Browne, N.B. Attention is spontaneously biased toward regularities. Psychol. Sci., 2013, 24(5), 667-677. doi: 10.1177/0956797612460407 PMID: 23558552
- Shomstein, S.; Gottlieb, J. Spatial and non-spatial aspects of visual attention: Interactive cognitive mechanisms and neural underpinnings. Neuropsychologia, 2016, 92, 9-19. doi: 10.1016/j.neuropsychologia.2016.05.021 PMID: 27256592
- Shomstein, S.; Behrmann, M. Cortical systems mediating visual attention to both objects and spatial locations. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11387-11392. doi: 10.1073/pnas.0601813103 PMID: 16840559
- Chelazzi, L.; Perlato, A.; Santandrea, E.; Della Libera, C. Rewards teach visual selective attention. Vision Res., 2013, 85, 58-72. doi: 10.1016/j.visres.2012.12.005 PMID: 23262054
- Chelazzi, L. E to inova, J.; Calletti, R.; Lo Gerfo, E.; Sani, I.; Della Libera, C.; Santandrea, E. Altering spatial priority maps via reward-based learning. J. Neurosci., 2014, 34(25), 8594-8604. doi: 10.1523/JNEUROSCI.0277-14.2014 PMID: 24948813
- Anderson, B.A.; Laurent, P.A.; Yantis, S. Learned value magnifies salience-based attentional capture. PLoS One, 2011, 6(11), e27926. doi: 10.1371/journal.pone.0027926 PMID: 22132170
- Raymond, J.E.; OBrien, J.L. Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychol. Sci., 2009, 20(8), 981-988. doi: 10.1111/j.1467-9280.2009.02391.x PMID: 19549080
- Markovic, J.; Anderson, A.K.; Todd, R.M. Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behav. Brain Res., 2014, 259, 229-241. doi: 10.1016/j.bbr.2013.11.018 PMID: 24269973
- Mather, M.; Sutherland, M.R. Arousal-biased competition in perception and memory. Perspect. Psychol. Sci., 2011, 6(2), 114-133. doi: 10.1177/1745691611400234 PMID: 21660127
- Todd, R.M.; Cunningham, W.A.; Anderson, A.K.; Thompson, E. Affect-biased attention as emotion regulation. Trends Cogn. Sci., 2012, 16(7), 365-372. doi: 10.1016/j.tics.2012.06.003 PMID: 22717469
- Vuilleumier, P. Affective and motivational control of vision. Curr. Opin. Neurol., 2015, 28(1), 29-35. doi: 10.1097/WCO.0000000000000159 PMID: 25490197
- Anderson, B.A. Value-driven attentional priority is context specific. Psychon. Bull. Rev., 2015, 22(3), 750-756. doi: 10.3758/s13423-014-0724-0 PMID: 25199468
- McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
- Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Leriche, M.; Vautrelle, N.; Hayes, L.M.; Overton, P. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat., 2010, 4, 4. doi: 10.3389/fnana.2010.00132 PMID: 20941324
- May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378. doi: 10.1016/S0079-6123(05)51011-2 PMID: 16221594
- Schiller, P.H.; Sandell, J.H. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp. Brain Res., 1983, 49(3), 381-392. doi: 10.1007/BF00238780 PMID: 6641836
- Albano, J.E.; Norton, T.T.; Hall, W.C. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res., 1979, 173(1), 1-11. doi: 10.1016/0006-8993(79)91090-4 PMID: 90538
- Harting, J.K.; Huerta, M.F.; Hashikawa, T.; van Lieshout, D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol., 1991, 304(2), 275-306. doi: 10.1002/cne.903040210 PMID: 1707899
- Basso, M.A.; Bickford, M.E.; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109(6), 918-937. doi: 10.1016/j.neuron.2021.01.013 PMID: 33548173
- Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001 PMID: 34102128
- Chen, C.Y.; Hafed, Z.M. Orientation and contrast tuning properties and temporal flicker fusion characteristics of primate superior colliculus neurons. Front. Neural Circuits, 2018, 12, 58. doi: 10.3389/fncir.2018.00058 PMID: 30087598
- Veale, R.; Hafed, Z.M.; Yoshida, M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1714), 20160113. doi: 10.1098/rstb.2016.0113 PMID: 28044023
- White, B.J.; Berg, D.J.; Kan, J.Y.; Marino, R.A.; Itti, L.; Munoz, D.P. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun., 2017, 8(1), 14263. doi: 10.1038/ncomms14263 PMID: 28117340
- White, B.J.; Kan, J.Y.; Levy, R.; Itti, L.; Munoz, D.P. Superior colliculus encodes visual saliency before the primary visual cortex. Proc. Natl. Acad. Sci. USA, 2017, 114(35), 9451-9456. doi: 10.1073/pnas.1701003114 PMID: 28808026
- Basso, M.A.; Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci., 1998, 18(18), 7519-7534. doi: 10.1523/JNEUROSCI.18-18-07519.1998 PMID: 9736670
- Krauzlis, R.J.; Lovejoy, L.P.; Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci., 2013, 36(1), 165-182. doi: 10.1146/annurev-neuro-062012-170249 PMID: 23682659
- Kustov, A.A.; Lee Robinson, D. Shared neural control of attentional shifts and eye movements. Nature, 1996, 384(6604), 74-77. doi: 10.1038/384074a0 PMID: 8900281
- Müller, J.R.; Philiastides, M.G.; Newsome, W.T. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 524-529. doi: 10.1073/pnas.0408311101 PMID: 15601760
- Lovejoy, L.P.; Krauzlis, R.J. Changes in perceptual sensitivity related to spatial cues depends on subcortical activity. Proc. Natl. Acad. Sci. USA, 2017, 114(23), 6122-6126. doi: 10.1073/pnas.1609711114 PMID: 28533384
- Basso, M.A.; May, P.J. Circuits for Action and Cognition: A View from the Superior colliculus. Annu. Rev. Vis. Sci., 2017, 3(1), 197-226. doi: 10.1146/annurev-vision-102016-061234 PMID: 28617660
- Koch, C.; Ullman, S. Selecting One Among the Many: A Simple Network Implementing Shifts in Selective Visual Attention; Massachusetts Inst Of Tech Cambridge Artificial Intelligence Lab, 1984.
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20(11), 1254-1259. doi: 10.1109/34.730558
- Mendez, C.A.; Celeghin, A.; Diano, M.; Orsenigo, D.; Ocak, B.; Tamietto, M. A deep neural network model of the primate superior colliculus for emotion recognition. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2022, 377(1863), 20210512. doi: 10.1098/rstb.2021.0512
- Soares, S.C.; Maior, R.S.; Isbell, L.A.; Tomaz, C.; Nishijo, H. Fast detector/first responder: Interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci., 2017, 11, 67. doi: 10.3389/fnins.2017.00067 PMID: 28261046
- Romanski, L.M.; Giguere, M.; Bates, J.F.; Goldman-Rakic, P.S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J. Comp. Neurol., 1997, 379(3), 313-332. doi: 10.1002/(SICI)1096-9861(19970317)379:33.0.CO;2-6 PMID: 9067827
- Bisley, J.W.; Goldberg, M.E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci., 2010, 33(1), 1-21. doi: 10.1146/annurev-neuro-060909-152823 PMID: 20192813
- Sommer, M.A.; Wurtz, R.H. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol., 2004, 91(3), 1381-1402. doi: 10.1152/jn.00738.2003 PMID: 14573558
- Johnson, J.A.; Strafella, A.P.; Zatorre, R.J. The role of the dorsolateral prefrontal cortex in bimodal divided attention: Two transcranial magnetic stimulation studies. J. Cogn. Neurosci., 2007, 19(6), 907-920. doi: 10.1162/jocn.2007.19.6.907 PMID: 17536962
- Loose, R.; Kaufmann, C.; Tucha, O.; Auer, D.P.; Lange, K.W. Neural networks of response shifting: Influence of task speed and stimulus material. Brain Res., 2006, 1090(1), 146-155. doi: 10.1016/j.brainres.2006.03.039 PMID: 16643867
- Esposito, M.; Tamietto, M.; Geminiani, G.C.; Celeghin, A. A subcortical network for implicit visuo-spatial attention: Implications for Parkinsons Disease. Cortex, 2021, 141, 421-435. doi: 10.1016/j.cortex.2021.05.003 PMID: 34144272
- Anderson, B.A. The attention habit: how reward learning shapes attentional selection. Ann. N. Y. Acad. Sci., 2016, 1369(1), 24-39. doi: 10.1111/nyas.12957 PMID: 26595376
- Deijen, J.B.; Stoffers, D.; Berendse, H.W.; Wolters, E.C.; Theeuwes, J. Abnormal susceptibility to distracters hinders perception in early stage Parkinsons disease: A controlled study. BMC Neurol., 2006, 6(1), 43. doi: 10.1186/1471-2377-6-43 PMID: 17156486
- Lee, E.Y.; Cowan, N.; Vogel, E.K.; Rolan, T.; Valle-Inclán, F.; Hackley, S.A. Visual working memory deficits in patients with Parkinsons disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 2010, 133(9), 2677-2689. doi: 10.1093/brain/awq197 PMID: 20688815
- McNab, F.; Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci., 2008, 11(1), 103-107. doi: 10.1038/nn2024 PMID: 18066057
- Tommasi, G.; Fiorio, M.; Yelnik, J.; Krack, P.; Sala, F.; Schmitt, E.; Fraix, V.; Bertolasi, L.; Le Bas, J.F.; Ricciardi, G.K.; Fiaschi, A.; Theeuwes, J.; Pollak, P.; Chelazzi, L. Disentangling the role of cortico-basal ganglia loops in top-down and bottom-up visual attention: An investigation of attention deficits in parkinson disease. J. Cogn. Neurosci., 2015, 27(6), 1215-1237. doi: 10.1162/jocn_a_00770 PMID: 25514652
- van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J. Neurosci., 2010, 30(29), 9910-9918. doi: 10.1523/JNEUROSCI.1111-10.2010 PMID: 20660273
- van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. Cereb. Cortex, 2015, 25(6), 1527-1534. doi: 10.1093/cercor/bht345 PMID: 24343891
- Ravizza, S.M.; Ivry, R.B. Comparison of the basal ganglia and cerebellum in shifting attention. J. Cogn. Neurosci., 2001, 13(3), 285-297. doi: 10.1162/08989290151137340 PMID: 11371307
- Shulman, G.L.; Astafiev, S.V.; Franke, D.; Pope, D.L.W.; Snyder, A.Z.; McAvoy, M.P.; Corbetta, M. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J. Neurosci., 2009, 29(14), 4392-4407. doi: 10.1523/JNEUROSCI.5609-08.2009 PMID: 19357267
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
- Nakano, K.; Kayahara, T.; Tsutsumi, T.; Ushiro, H. Neural circuits and functional organization of the striatum. J. Neurol., 2000, 247(S5)(Suppl. 5), V1-V15. doi: 10.1007/PL00007778 PMID: 11081799
- Postuma, R.B.; Dagher, A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb. Cortex, 2006, 16(10), 1508-1521. doi: 10.1093/cercor/bhj088 PMID: 16373457
- Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
- May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: A pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587. doi: 10.1111/j.1460-9568.2008.06596.x PMID: 19175405
- McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234. doi: 10.1016/j.neuroscience.2005.11.015 PMID: 16361067
- Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
- Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160. doi: 10.1016/0006-8993(94)91776-0 PMID: 8180831
- Nambu, A. Seven problems on the basal ganglia. Curr. Opin. Neurobiol., 2008, 18(6), 595-604. doi: 10.1016/j.conb.2008.11.001 PMID: 19081243
- Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neurosci. Res., 2002, 43(2), 111-117. doi: 10.1016/S0168-0102(02)00027-5 PMID: 12067746
- Bočková, M.; Chládek, J.; Jurák, P.; Halámek, J.; Balá, M.; Rektor, I. Involvement of the subthalamic nucleus and globus pallidus internus in attention. J. Neural Transm. (Vienna), 2011, 118(8), 1235-1245. doi: 10.1007/s00702-010-0575-4 PMID: 21191623
- Wessel, J.R.; Jenkinson, N.; Brittain, J.S.; Voets, S.H.E.M.; Aziz, T.Z.; Aron, A.R. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. Nat. Commun., 2016, 7(1), 11195. doi: 10.1038/ncomms11195 PMID: 27088156
- Fife, K.H.; Gutierrez-Reed, N.A.; Zell, V.; Bailly, J.; Lewis, C.M.; Aron, A.R.; Hnasko, T.S. Causal role for the subthalamic nucleus in interrupting behavior. eLife, 2017, 6, e27689. doi: 10.7554/eLife.27689 PMID: 28742497
- Failing, M.; Feldmann-Wüstefeld, T.; Wang, B.; Olivers, C.; Theeuwes, J. Statistical regularities induce spatial as well as feature-specific suppression. J. Exp. Psychol. Hum. Percept. Perform., 2019, 45(10), 1291-1303. doi: 10.1037/xhp0000660 PMID: 31157536
- Ferrante, O.; Patacca, A.; Di Caro, V.; Della Libera, C.; Santandrea, E.; Chelazzi, L. Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 2018, 102, 67-95. doi: 10.1016/j.cortex.2017.09.027 PMID: 29096874
- Leber, A.B.; Gwinn, R.E.; Hong, Y.; OToole, R.J. Implicitly learned suppression of irrelevant spatial locations. Psychon. Bull. Rev., 2016, 23(6), 1873-1881. doi: 10.3758/s13423-016-1065-y PMID: 27225635
- Mukai, I.; Kim, D.; Fukunaga, M.; Japee, S.; Marrett, S.; Ungerleider, L.G. Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J. Neurosci., 2007, 27(42), 11401-11411. doi: 10.1523/JNEUROSCI.3002-07.2007 PMID: 17942734
- Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci., 2008, 31(1), 359-387. doi: 10.1146/annurev.neuro.29.051605.112851 PMID: 18558860
- Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinsons disease. Nat. Rev. Neurosci., 2010, 11(11), 760-772. doi: 10.1038/nrn2915 PMID: 20944662
- Krauzlis, R.J.; Bogadhi, A.R.; Herman, J.P.; Bollimunta, A. Selective attention without a neocortex. Cortex, 2018, 102, 161-175. doi: 10.1016/j.cortex.2017.08.026 PMID: 28958417
- Hikosaka, O.; Yasuda, M.; Nakamura, K.; Isoda, M.; Kim, H.F.; Terao, Y.; Amita, H.; Maeda, K. Multiple neuronal circuits for variable objectaction choices based on short- and long-term memories. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26313-26320. doi: 10.1073/pnas.1902283116 PMID: 31871157
- Kim, H.F.; Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 2013, 79(5), 1001-1010. doi: 10.1016/j.neuron.2013.06.044 PMID: 23954031
- Ragozzino, M.E. Role of the striatum in learning and memory. Neurobiol. Learn. Mem., 2007, 355-379.
- Yasuda, M.; Hikosaka, O. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. J. Neurophysiol., 2015, 113(6), 1681-1696. doi: 10.1152/jn.00674.2014 PMID: 25540224
- Anderson, B.A.; Laurent, P.A.; Yantis, S. Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Res., 2014, 1587, 88-96. doi: 10.1016/j.brainres.2014.08.062 PMID: 25171805
- Kim, H.F.; Amita, H.; Hikosaka, O. Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron, 2017, 94(4), 920-930.e3. doi: 10.1016/j.neuron.2017.04.033 PMID: 28521141
- Kunimatsu, J.; Maeda, K.; Hikosaka, O. The caudal part of putamen represents the historical object value information. J. Neurosci., 2019, 39(9), 1709-1719. PMID: 30573645
- Yamamoto, S.; Kim, H.F.; Hikosaka, O. Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. J. Neurosci., 2013, 33(27), 11227-11238. doi: 10.1523/JNEUROSCI.0318-13.2013 PMID: 23825426
- Kim, H.F.; Ghazizadeh, A.; Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat., 2014, 8, 120. doi: 10.3389/fnana.2014.00120 PMID: 25400553
- Herman, J.P.; Arcizet, F.; Krauzlis, R.J. Attention-related modulation of caudate neurons depends on superior colliculus activity. eLife, 2020, 9e53998. doi: 10.7554/eLife.53998 PMID: 32940607
- Kang, J.; Kim, H.; Hwang, S.H.; Han, M.; Lee, S.H.; Kim, H.F. Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat. Commun., 2021, 12(1), 2100. doi: 10.1038/s41467-021-22335-5 PMID: 33833228
- Codispoti, M.; De Cesarei, A.; Biondi, S.; Ferrari, V. The fate of unattended stimuli and emotional habituation: Behavioral interference and cortical changes. Cogn. Affect. Behav. Neurosci., 2016, 16(6), 1063-1073. doi: 10.3758/s13415-016-0453-0 PMID: 27557884
- Micucci, A.; Ferrari, V.; De Cesarei, A.; Codispoti, M. Contextual modulation of emotional distraction: Attentional capture and motivational significance. J. Cogn. Neurosci., 2020, 32(4), 621-633. doi: 10.1162/jocn_a_01505 PMID: 31765599
- Diano, M.; Celeghin, A.; Bagnis, A.; Tamietto, M. Amygdala response to emotional stimuli without awareness: Facts and interpretations. Front. Psychol., 2017, 7, 2029. doi: 10.3389/fpsyg.2016.02029 PMID: 28119645
- Nishijo, H.; Rafal, R.; Tamietto, M. Editorial: Limbic-Brainstem roles in perception, cognition, emotion, and behavior. Front. Neurosci., 2018, 12, 395. doi: 10.3389/fnins.2018.00395 PMID: 29946232
- Pourtois, G.; Schettino, A.; Vuilleumier, P. Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol. Psychol., 2013, 92(3), 492-512. doi: 10.1016/j.biopsycho.2012.02.007 PMID: 22373657
- Tamietto, M.; de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci., 2010, 11(10), 697-709. doi: 10.1038/nrn2889 PMID: 20811475
- Le Doux, J. Emotional networks and motor control: a fearful view. Prog. Brain Res., 1996, 107, 437-446. doi: 10.1016/s0079-6123(08)61880-4
- Phelps, E.A.; LeDoux, J.E. Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 2005, 48(2), 175-187. doi: 10.1016/j.neuron.2005.09.025 PMID: 16242399
- LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci., 2000, 23(1), 155-184. doi: 10.1146/annurev.neuro.23.1.155 PMID: 10845062
- LeDoux, J.E. Emotion, memory and the brain. Sci. Am., 1994, 270(6), 50-57. doi: 10.1038/scientificamerican0694-50 PMID: 8023118
- Morris, J.S.; Öhman, A.; Dolan, R.J. A subcortical pathway to the right amygdala mediating "unseen" fear. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1680-1685. doi: 10.1073/pnas.96.4.1680 PMID: 9990084
- Rafal, R.D.; Koller, K.; Bultitude, J.H.; Mullins, P.; Ward, R.; Mitchell, A.S.; Bell, A.H. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J. Neurophysiol., 2015, 114(3), 1947-1962. doi: 10.1152/jn.01016.2014 PMID: 26224780
- Vuilleumier, P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci., 2003, 6(6), 624-631. doi: 10.1038/nn1057 PMID: 12740580
- Koller, K.; Rafal, R.D.; Platt, A.; Mitchell, N.D. Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia, 2019, 128, 78-86. doi: 10.1016/j.neuropsychologia.2018.01.027 PMID: 29410291
- Pegna, A.J.; Khateb, A.; Lazeyras, F.; Seghier, M.L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci., 2005, 8(1), 24-25. doi: 10.1038/nn1364 PMID: 15592466
- Burra, N.; Hervais-Adelman, A.; Celeghin, A.; de Gelder, B.; Pegna, A.J. Affective blindsight relies on low spatial frequencies. Neuropsychologia, 2019, 128, 44-49. doi: 10.1016/j.neuropsychologia.2017.10.009 PMID: 28993236
- de Gelder, B.; Tamietto, M.; Pegna, A.J.; Van den Stock, J. Visual imagery influences brain responses to visual stimulation in bilateral cortical blindness. Cortex, 2015, 72, 15-26. doi: 10.1016/j.cortex.2014.11.009 PMID: 25571770
- McFadyen, J.; Mattingley, J.B.; Garrido, M.I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 2019, 8e40766. doi: 10.7554/eLife.40766 PMID: 30648533
- Morris, J.; Friston, K.J.; Büchel, C.; Frith, C.D.; Young, A.W.; Calder, A.J.; Dolan, R.J. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 1998, 121(1), 47-57. doi: 10.1093/brain/121.1.47 PMID: 9549487
- Whalen, P.J.; Rauch, S.L.; Etcoff, N.L.; McInerney, S.C.; Lee, M.B.; Jenike, M.A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci., 1998, 18(1), 411-418. doi: 10.1523/JNEUROSCI.18-01-00411.1998 PMID: 9412517
- Critchley, H.D.; Mathias, C.J.; Dolan, R.J. Fear conditioning in humans: The influence of awareness and autonomic arousal on functional neuroanatomy. Neuron, 2002, 33(4), 653-663. doi: 10.1016/S0896-6273(02)00588-3 PMID: 11856537
- Killgore, W.D.S.; Yurgelun-Todd, D.A. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage, 2004, 21(4), 1215-1223. doi: 10.1016/j.neuroimage.2003.12.033 PMID: 15050549
- Pasley, B.N.; Mayes, L.C.; Schultz, R.T. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron, 2004, 42(1), 163-172. doi: 10.1016/S0896-6273(04)00155-2 PMID: 15066273
- Williams, L.M.; Das, P.; Liddell, B.J.; Kemp, A.H.; Rennie, C.J.; Gordon, E. Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J. Neurosci., 2006, 26(36), 9264-9271. doi: 10.1523/JNEUROSCI.1016-06.2006 PMID: 16957082
- Williams, L.M.; Liddell, B.J.; Rathjen, J.; Brown, K.J.; Gray, J.; Phillips, M.; Young, A.; Gordon, E. Mapping the time course of nonconscious and conscious perception of fear: An integration of central and peripheral measures. Hum. Brain Mapp., 2004, 21(2), 64-74. doi: 10.1002/hbm.10154 PMID: 14755594
- Liddell, B.J.; Brown, K.J.; Kemp, A.H.; Barton, M.J.; Das, P.; Peduto, A.; Gordon, E.; Williams, L.M. A direct brainstem-amygdala-cortical alarm system for subliminal signals of fear. Neuroimage, 2005, 24(1), 235-243. doi: 10.1016/j.neuroimage.2004.08.016 PMID: 15588615
- Williams, L.M.; Liddell, B.J.; Kemp, A.H.; Bryant, R.A.; Meares, R.A.; Peduto, A.S.; Gordon, E. Amygdalaprefrontal dissociation of subliminal and supraliminal fear. Hum. Brain Mapp., 2006, 27(8), 652-661. doi: 10.1002/hbm.20208 PMID: 16281289
- Carlson, J.M.; Reinke, K.S.; Habib, R. A left amygdala mediated network for rapid orienting to masked fearful faces. Neuropsychologia, 2009, 47(5), 1386-1389. doi: 10.1016/j.neuropsychologia.2009.01.026 PMID: 19428403
- Yoon, K.L.; Hong, S.W.; Joormann, J.; Kang, P. Perception of facial expressions of emotion during binocular rivalry. Emotion, 2009, 9(2), 172-182. doi: 10.1037/a0014714 PMID: 19348530
- Juruena, M.F.; Giampietro, V.P.; Smith, S.D.; Surguladze, S.A.; Dalton, J.A.; Benson, P.J.; Cleare, A.J.; Fu, C.H. Amygdala activation to masked happy facial expressions. J. Int. Neuropsychol. Soc., 2010, 16(2), 383-387. doi: 10.1017/S1355617709991172 PMID: 19958569
- Troiani, V.; Schultz, R.T. Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Front. Hum. Neurosci., 2013, 7, 241. doi: 10.3389/fnhum.2013.00241 PMID: 23761748
- Stepniewska, I.; Qi, H-X.; Kaas, J.H. Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis. Neurosci., 2000, 17(4), 529-549. doi: 10.1017/S0952523800174048 PMID: 11016573
- Benevento, L.A.; Standage, G.P. The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J. Comp. Neurol., 1983, 217(3), 307-336. doi: 10.1002/cne.902170307 PMID: 6886056
- Benevento, L.A.; Fallon, J.H. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol., 1975, 160(3), 339-361. doi: 10.1002/cne.901600306 PMID: 1112928
- Jacobson, S.; Trojanowski, J.Q. Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography. Brain Res., 1975, 85(3), 385-401. doi: 10.1016/0006-8993(75)90815-X PMID: 46175
- Elorette, C.; Forcelli, P.A.; Saunders, R.C.; Malkova, L. Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Front. Neural Circuits, 2018, 12, 91. doi: 10.3389/fncir.2018.00091 PMID: 30405362
- Locke, S. The projection of the medical pulvinar of the macaque. J. Comp. Neurol., 1960, 115(2), 155-169. doi: 10.1002/cne.901150205 PMID: 13762988
- Jones, E.G.; Burton, H. A projection from the medial pulvinar to the amygdala in primates. Brain Res., 1976, 104(1), 142-147. doi: 10.1016/0006-8993(76)90654-5 PMID: 813820
- Aggleton, J.P.; Burton, M.J.; Passingham, R.E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res., 1980, 190(2), 347-368. doi: 10.1016/0006-8993(80)90279-6 PMID: 6768425
- Norita, M.; Kawamura, K. Subcortical afferents to the monkey amygdala: An HRP study. Brain Res., 1980, 190(1), 225-230. doi: 10.1016/0006-8993(80)91171-3 PMID: 6769534
- Stefanacci, L.; Amaral, D.G. Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. J. Comp. Neurol., 2000, 421(1), 52-79. doi: 10.1002/(SICI)1096-9861(20000522)421:13.0.CO;2-O PMID: 10813772
- Amaral, D.G.; Price, J.L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol., 1984, 230(4), 465-496. doi: 10.1002/cne.902300402 PMID: 6520247
- Gattass, R.; Soares, J.G.M.; Lima, B. Connectivity of the Pulvinar. Adv. Anat. Embryol. Cell Biol., 2018, 225, 19-29. doi: 10.1007/978-3-319-70046-5_5 PMID: 29116446
- Fudge, J.L.; Haber, S.N. The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience, 2000, 97(3), 479-494. doi: 10.1016/S0306-4522(00)00092-0 PMID: 10828531
- Griggs, W.S.; Kim, H.F.; Ghazizadeh, A.; Costello, M.G.; Wall, K.M.; Hikosaka, O. Flexible and stable value coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs. Front. Neuroanat., 2017, 11, 106. doi: 10.3389/fnana.2017.00106 PMID: 29225570
- Price, J.L.; Amaral, D.G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci., 1981, 1(11), 1242-1259. doi: 10.1523/JNEUROSCI.01-11-01242.1981 PMID: 6171630
- Shinonaga, Y.; Takada, M.; Mizuno, N. Direct projections from the central amygdaloid nucleus to the globus pallidus and substantia nigra in the cat. Neuroscience, 1992, 51(3), 691-703. doi: 10.1016/0306-4522(92)90308-O PMID: 1283209
- Vankova, M.; Arluison, M.; Leviel, V.; Tramu, G. Afferent connections of the rat substantia nigra pars lateralis with special reference to peptide-containing neurons of the amygdalo-nigral pathway. J. Chem. Neuroanat., 1992, 5(1), 39-50. doi: 10.1016/0891-0618(92)90032-L PMID: 1376607
- Maeda, K.; Inoue, K.; Kunimatsu, J.; Takada, M.; Hikosaka, O. Primate amygdalo-nigral pathway for boosting oculomotor action in motivating situations. iScience, 2020, 23(6), 101194. doi: 10.1016/j.isci.2020.101194 PMID: 32516719
- Maeda, K.; Kunimatsu, J.; Hikosaka, O. Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol., 2018, 16(6), e2005339. doi: 10.1371/journal.pbio.2005339 PMID: 29870524
- Mograbi, D.C.; Morris, R.G. The developing concept of implicit awareness: A rejoinder and reply to commentaries on Mograbi and Morris. Cogn. Neurosci., 2014, 5(3-4), 138-142. doi: 10.1080/17588928.2014.905522 PMID: 24717089
- Starkstein, S.E.; Jorge, R.E.; Robinson, R.G. The frequency, clinical correlates, and mechanism of anosognosia after stroke. Can. J. Psychiatry, 2010, 55(6), 355-361. doi: 10.1177/070674371005500604 PMID: 20540830
- McGlynn, S.M.; Schacter, D.L. Unawareness of deficits in neuropsychological syndromes. J. Clin. Exp. Neuropsychol., 1989, 11(2), 143-205. doi: 10.1080/01688638908400882 PMID: 2647781
- Prigatano, G.P. The study of anosognosia; Oxford University Press, 2010.
- Celeghin, A.; Diano, M.; de Gelder, B.; Weiskrantz, L.; Marzi, C.A.; Tamietto, M. Intact hemisphere and corpus callosum compensate for visuomotor functions after early visual cortex damage. Proc. Natl. Acad. Sci. USA, 2017, 114(48), E10475-E10483. doi: 10.1073/pnas.1714801114 PMID: 29133428
- Celeghin, A.; Tamietto, M. Blindsight: Functions, methods and neural substrates; Reference Module in Neuroscience and Biobehavioral Psychology, 2021.
- Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 1974, 97(1), 709-728. doi: 10.1093/brain/97.1.709 PMID: 4434190
- Georgy, L.; Celeghin, A.; Marzi, C.A.; Tamietto, M.; Ptito, A. The superior colliculus is sensitive to gestalt-like stimulus configuration in hemispherectomy patients. Cortex, 2016, 81, 151-161. doi: 10.1016/j.cortex.2016.04.018 PMID: 27208816
- Celeghin, A.; Barabas, M.; Mancini, F.; Bendini, M.; Pedrotti, E.; Prior, M.; Cantagallo, A.; Savazzi, S.; Marzi, C.A. Speeded manual responses to unseen visual stimuli in hemianopic patients: What kind of blindsight? Conscious. Cogn., 2015, 32, 6-14. doi: 10.1016/j.concog.2014.07.010 PMID: 25123328
- Celeghin, A.; de Gelder, B.; Tamietto, M. From affective blindsight to emotional consciousness. Conscious. Cogn., 2015, 36, 414-425. doi: 10.1016/j.concog.2015.05.007 PMID: 26058355
- Celeghin, A.; Savazzi, S.; Barabas, M.; Bendini, M.; Marzi, C.A. Blindsight is sensitive to stimulus numerosity and configuration: evidence from the redundant signal effect. Exp. Brain Res., 2015, 233(5), 1617-1623. doi: 10.1007/s00221-015-4236-6 PMID: 25712088
- Tamietto, M.; Morrone, M.C. Visual plasticity: blindsight bridges anatomy and function in the visual system. Curr. Biol., 2016, 26(2), R70-R73. doi: 10.1016/j.cub.2015.11.026 PMID: 26811892
- Kinoshita, M.; Kato, R.; Isa, K.; Kobayashi, K.; Kobayashi, K.; Onoe, H.; Isa, T. Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat. Commun., 2019, 10(1), 135. doi: 10.1038/s41467-018-08058-0 PMID: 30635570
- Kato, R.; Takaura, K.; Ikeda, T.; Yoshida, M.; Isa, T. Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. Eur. J. Neurosci., 2011, 33(11), 1952-1960. doi: 10.1111/j.1460-9568.2011.07729.x PMID: 21645091
- Bisiach, E.; Rusconi, M.L. Break-down of perceptual awareness in unilateral neglect. Cortex, 1990, 26(4), 643-649. doi: 10.1016/S0010-9452(13)80313-9 PMID: 2081401
- Làdavas, E.; Paladini, R.; Cubelli, R. Implicit associative priming in a patient with left visual neglect. Neuropsychologia, 1993, 31(12), 1307-1320. doi: 10.1016/0028-3932(93)90100-E PMID: 8127429
- Shaqiri, A.; Anderson, B. Priming and statistical learning in right brain damaged patients. Neuropsychologia, 2013, 51(13), 2526-2533. doi: 10.1016/j.neuropsychologia.2013.09.024 PMID: 24075841
- Wansard, M.; Bartolomeo, P.; Vanderaspoilden, V.; Geurten, M.; Meulemans, T. Can the exploration of left space be induced implicitly in unilateral neglect? Conscious. Cogn., 2015, 31, 115-123. doi: 10.1016/j.concog.2014.11.004 PMID: 25460245
- Brown, C.R.H. The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 2022, 150, 85-107. doi: 10.1016/j.cortex.2022.03.001 PMID: 35381470
- Domínguez-Borràs, J.; Saj, A.; Armony, J.L.; Vuilleumier, P. Emotional processing and its impact on unilateral neglect and extinction. Neuropsychologia, 2012, 50(6), 1054-1071. doi: 10.1016/j.neuropsychologia.2012.03.003 PMID: 22406694
- Tamietto, M.; Latini, C.L.; Pia, L.; Zettin, M.; Gionco, M.; Geminiani, G. Effects of emotional face cueing on line bisection in neglect: A single case study. Neurocase, 2005, 11(6), 399-404. doi: 10.1080/13554790500259717 PMID: 16393753
- Tamietto, M.; Cauda, F.; Celeghin, A.; Diano, M.; Costa, T.; Cossa, F.M.; Sacco, K.; Duca, S.; Geminiani, G.C.; de Gelder, B. Once you feel it, you see it: Insula and sensory-motor contribution to visual awareness for fearful bodies in parietal neglect. Cortex, 2015, 62, 56-72. doi: 10.1016/j.cortex.2014.10.009 PMID: 25465122
- Tamietto, M.; Geminiani, G.; Genero, R.; de Gelder, B. Seeing fearful body language overcomes attentional deficits in patients with neglect. J. Cogn. Neurosci., 2007, 19(3), 445-454. doi: 10.1162/jocn.2007.19.3.445 PMID: 17335393
- Domínguez-Borràs, J.; Armony, J.L.; Maravita, A.; Driver, J.; Vuilleumier, P. Partial recovery of visual extinction by pavlovian conditioning in a patient with hemispatial neglect. Cortex, 2013, 49(3), 891-898. doi: 10.1016/j.cortex.2012.11.005 PMID: 23337458
- Lucas, N.; Schwartz, S.; Leroy, R.; Pavin, S.; Diserens, K.; Vuilleumier, P. Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 2013, 49(10), 2616-2627. doi: 10.1016/j.cortex.2013.06.004 PMID: 23969194
- Geng, J.J.; Behrmann, M. Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychol. Sci., 2002, 13(6), 520-525. doi: 10.1111/1467-9280.00491 PMID: 12430835
- Jiang, Y.; Chun, M.M. Selective attention modulates implicit learning. Q. J. Exp. Psychol. A, 2001, 54(4), 1105-1124. doi: 10.1080/713756001 PMID: 11765735
- Chun, M.M.; Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognit. Psychol., 1998, 36(1), 28-71. doi: 10.1006/cogp.1998.0681 PMID: 9679076
- Hoffmann, J.; Kunde, W. Location-specific target expectancies in visual search. J. Exp. Psychol. Hum. Percept. Perform., 1999, 25(4), 1127-1141. doi: 10.1037/0096-1523.25.4.1127
- Mograbi, D.C.; Morris, R.G. Implicit awareness in anosognosia: Clinical observations, experimental evidence, and theoretical implications. Cogn. Neurosci., 2013, 4(3-4), 181-197. doi: 10.1080/17588928.2013.833899 PMID: 24251606
- Nardone, I.B.; Ward, R.; Fotopoulou, A.; Turnbull, O.H. Attention and emotion in anosognosia: evidence of implicit awareness and repression? Neurocase, 2007, 13(5), 438-445. PMID: 18781443
- LeDoux, J.E.; Brown, R. A higher-order theory of emotional consciousness. Proc. Natl. Acad. Sci. USA, 2017, 114(10), E2016-E2025. doi: 10.1073/pnas.1619316114 PMID: 28202735
- Rafee, S.; OKeeffe, F.; ORiordan, S.; Reilly, R.; Hutchinson, M. Adult onset dystonia: A disorder of the collicularpulvinaramygdala network. Cortex, 2021, 143, 282-289. doi: 10.1016/j.cortex.2021.05.010 PMID: 34148640
- Hutchinson, M.; Isa, T.; Molloy, A.; Kimmich, O.; Williams, L.; Molloy, F.; Moore, H.; Healy, D.G.; Lynch, T.; Walsh, C.; Butler, J.; Reilly, R.B.; Walsh, R.; ORiordan, S. Cervical dystonia: A disorder of the midbrain network for covert attentional orienting. Front. Neurol., 2014, 5, 54. doi: 10.3389/fneur.2014.00054 PMID: 24803911
- Palermo, S. What is reduced self-awareness? An overview of interpretative models, bioethical issues and neuroimaging findings. In: Influences and Importance of Self-Awareness, Self-Evaluation and Self-Esteem; Thomas, H.R., Ed.; Nova Medicine & Health, 2022; pp. 65-88.
- Gainotti, G. The relations between cognitive and motivational components of anosognosia for left-sided hemiplegia and the right hemisphere dominance for emotions: A historical survey. Conscious. Cogn., 2021, 94, 103180. doi: 10.1016/j.concog.2021.103180 PMID: 34392025
- Pia, L.; Neppi-Modona, M.; Ricci, R.; Berti, A. The anatomy of anosognosia for hemiplegia: A meta-analysis. Cortex, 2004, 40(2), 367-377. doi: 10.1016/S0010-9452(08)70131-X PMID: 15156794
- Orfei, M.D.; Robinson, R.G.; Prigatano, G.P.; Starkstein, S.; Rüsch, N.; Bria, P.; Caltagirone, C.; Spalletta, G. Anosognosia for hemiplegia after stroke is a multifaceted phenomenon: A systematic review of the literature. Brain, 2007, 130(12), 3075-3090. doi: 10.1093/brain/awm106 PMID: 17533170
- Berti, A.; Bottini, G.; Gandola, M.; Pia, L.; Smania, N.; Stracciari, A.; Castiglioni, I.; Vallar, G.; Paulesu, E. Shared cortical anatomy for motor awareness and motor control. Science, 2005, 309(5733), 488-491. doi: 10.1126/science.1110625 PMID: 16020740
- Kortte, K.; Hillis, A.E. Recent advances in the understanding of neglect and anosognosia following right hemisphere stroke. Curr. Neurol. Neurosci. Rep., 2009, 9(6), 459-465. doi: 10.1007/s11910-009-0068-8 PMID: 19818233
- Grattan, E.S.; Skidmore, E.R.; Woodbury, M.L. Examining anosognosia of neglect. OTJR (Thorofare, N.J.), 2018, 38(2), 113-120. doi: 10.1177/1539449217747586 PMID: 29251546
- Carota, A.; Bianchini, F.; Pizzamiglio, L.; Calabrese, P. The "Altitudinal Antons syndrome": coexistence of anosognosia, blindsight and left inattention. Behav. Neurol., 2013, 26(1-2), 157-163. doi: 10.1155/2013/241715 PMID: 22713392
- Moro, V.; Scandola, M.; Bulgarelli, C.; Avesani, R.; Fotopoulou, A. Error-based training and emergent awareness in anosognosia for hemiplegia. Neuropsychol. Rehabil., 2015, 25(4), 593-616. doi: 10.1080/09602011.2014.951659 PMID: 25142215
- DImperio, D.; Bulgarelli, C.; Bertagnoli, S.; Avesani, R.; Moro, V. Modulating anosognosia for hemiplegia: The role of dangerous actions in emergent awareness. Cortex, 2017, 92, 187-203. doi: 10.1016/j.cortex.2017.04.009 PMID: 28501758
- Saj, A.; Vocat, R.; Vuilleumier, P. On the contribution of unconscious processes to implicit anosognosia. Cogn. Neurosci., 2013, 4(3-4), 198-199. doi: 10.1080/17588928.2013.854760 PMID: 24251607
- Michel, M.; Beck, D.; Block, N.; Blumenfeld, H.; Brown, R.; Carmel, D.; Carrasco, M.; Chirimuuta, M.; Chun, M.; Cleeremans, A.; Dehaene, S.; Fleming, S.M.; Frith, C.; Haggard, P.; He, B.J.; Heyes, C.; Goodale, M.A.; Irvine, L.; Kawato, M.; Kentridge, R.; King, J.R.; Knight, R.T.; Kouider, S.; Lamme, V.; Lamy, D.; Lau, H.; Laureys, S.; LeDoux, J.; Lin, Y.T.; Liu, K.; Macknik, S.L.; Martinez-Conde, S.; Mashour, G.A.; Melloni, L.; Miracchi, L.; Mylopoulos, M.; Naccache, L.; Owen, A.M.; Passingham, R.E.; Pessoa, L.; Peters, M.A.K.; Rahnev, D.; Ro, T.; Rosenthal, D.; Sasaki, Y.; Sergent, C.; Solovey, G.; Schiff, N.D.; Seth, A.; Tallon-Baudry, C.; Tamietto, M.; Tong, F.; van Gaal, S.; Vlassova, A.; Watanabe, T.; Weisberg, J.; Yan, K.; Yoshida, M. Opportunities and challenges for a maturing science of consciousness. Nat. Hum. Behav., 2019, 3(2), 104-107. doi: 10.1038/s41562-019-0531-8 PMID: 30944453
- Lehrer, D.S.; Lorenz, J. Anosognosia in schizophrenia: hidden in plain sight. Innov. Clin. Neurosci., 2014, 11(5-6), 10-17. PMID: 25152841
- Jenkinson, P.M.; Preston, C.; Ellis, S.J. Unawareness after stroke: A review and practical guide to understanding, assessing, and managing anosognosia for hemiplegia. J. Clin. Exp. Neuropsychol., 2011, 33(10), 1079-1093. doi: 10.1080/13803395.2011.596822 PMID: 21936643
- Wickens, J.R.; Reynolds, J.N.J.; Hyland, B.I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol., 2003, 13(6), 685-690. doi: 10.1016/j.conb.2003.10.013 PMID: 14662369
- Maier, M.; Ballester, B.R.; Verschure, P.F.M.J. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front. Syst. Neurosci., 2019, 13, 74. doi: 10.3389/fnsys.2019.00074 PMID: 31920570
- Abe, M.; Schambra, H.; Wassermann, E.M.; Luckenbaugh, D.; Schweighofer, N.; Cohen, L.G. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr. Biol., 2011, 21(7), 557-562. doi: 10.1016/j.cub.2011.02.030 PMID: 21419628
Supplementary files
