Реакция церебрального энергометаболизма на холодовой стресс у молодых людей, проживающих в Арктическом регионе Российской Федерации



Цитировать

Полный текст

Аннотация

Цель работы - определить особенности реакции энергетических процессов головного мозга на холодовой стресс у молодых людей - жителей Арктической зоны Российской Федерации. Методы. Исследованы энергетические процессы головного мозга с помощью аппаратно-программного комплекса «Нейро-КМ» для регистрации распределения уровня постоянного потенциала (УПП) у 97 человек (49 юношей и 48 девушек) в возрасте 18-19 лет. Регистрировался УПП в состоянии покоя и после проведения холодовой пробы. Анализ проводили путем картирования полученных с помощью монополярного измерения значений УПП и расчета его отклонений в каждом из отведений от средних значений, зарегистрированных по всем областям головы, при котором появляется возможность оценить локальные значения УПП в каждой из областей с исключением влияний, идущих от референтного электрода. С помощью факторного анализа с Варимакс-ротацией оценивались взаимоотношения показателей энергообеспечения головного мозга. Результаты. Холодовой стресс вызвал увеличение УПП по всем отведениям в обеих группах: в среднем на 6,7 % у юношей и 10,6 % у девушек. На протяжении восстановительного периода УПП продолжал увеличиваться по всем отведениям. К концу десятой минуты в группе юношей максимальное значение УПП было зафиксировано в центральном отведении, в группе девушек - в центральном и затылочном отделах головного мозга. Выводы. Нейрофизиологические механизмы, обеспечивающие энергетические процессы в коре головного мозга, при холодовом стрессе у юношей и девушек в климатогеографических условиях Арктической зоны России имеют различный характер. Так, у девушек адаптивные нейрофизиологические процессы, связанные с энергообеспечением головного мозга, протекают более напряженно и требуют больших энергетических затрат, чем у юношей.

Полный текст

Одним из основных климатических факторов Арктического региона Российской Федерации является холод. Активация центров терморегуляции приводит к возбуждению различных отделов головного мозга (ГМ), что не может не отражаться на интенсивности нейрофизиологических процессов, в том числе энергетических [3, 19]. При этом низкие температуры можно рассматривать как мощный стрессирующий фактор [6, 11, 16, 18]. Важную роль при формировании реакции на холодовой стресс играет центральная нервная система (ЦНС), осуществляющая функции регуляции и контроля [8, 20, 21]. Однако реакции церебрального энергометаболизма ГМ на холодовой стресс в литературе практически не описаны. Поскольку оценка энергетического состояния ГМ может дать новую информацию о протекании стресс-реакций на холод в организме человека, данная работа, по нашему мнению, является актуальной как с теоретических, так и практических позиций [14]. Наиболее приемлемым способом оценки в данном случае является регистрации уровня постоянного потенциала (УПП) ГМ, позволяющая определять текущее состояние отдельных областей ГМ, исследовать внутри- и межполушарные особенности энергетического взаимодействия коры в покое и при внешнем воздействии. УПП связан с целым комплексом биохимических и иммунологических параметров, характеризующих функциональное состояние адаптивных систем организма [13, 14]. Отклонение УПП от нормы свидетельствует об изменении на разных уровнях механизмов энергообеспечения нейронов ГМ и может служить показателем эффективности адаптационных перестроек организма при изменении условий окружающей среды [4, 5, 14]. Исходя из этого цель нашего исследования - определить особенности реакции энергетических процессов головного мозга на холодовой стресс у молодых людей, проживающих в Арктической зоне, по данным распределения уровня постоянного потенциала головного мозга. Методы В исследовании приняли участие 97 человек (49 юношей и 48 девушек) в возрасте 18-19 лет. Исследование было выполнено в соответствии со стандартами надлежащей клинической практики (Good Clinical Practice) и принципами Хельсинкской декларации. Протокол его был одобрен этическим комитетом Северного Арктического федерального университета имени М. В. Ломоносова. До включения в исследование у всех участников было получено письменное информированное согласие. В рамках данного исследования при сборе материала для составления выборок соблюдались все необходимые условия: регистрация уровня постоянного потенциала (УПП) у студентов проводилась в утренние часы, через 1,5-2 часа после приема пищи, при максимальном физическом и психическом покое. Для регистрации и анализа УПП использовался аппаратно-программный комплекс «Нейро-КМ». Регистрация осуществлялась с помощью хлорсере-бряных электродов монополярно по пяти отведениям. Активные электроды располагали вдоль сагиттальной линии в лобной, центральной и затылочной областях (Fz, Cz, Oz), а также в правом и левом височных отделах (Td, Ts) по международной схеме 10-20. Референтный электрод накладывали на запястье левой руки. Запись значений УПП осуществлялась через 5-6 минут после наложения электродов на точки отведения и далее велась непрерывно в течение всего исследования. После регистрации фоновых значений проводилась холодовая проба. При этом исследуемые удерживали кисть правой руки в холодной воде (t = 4 - 6 °С) в течение минуты. Далее на протяжении десятиминутного восстановительного периода молодые люди находились в полном покое. Анализ ПП проводился путем картирования моно-полярных значений ПП и расчета межэлектродной разности. Для оценки локальных значений ПП в каждом из отделов, исключая влияние референтного электрода, был произведен расчет отклонений ПП от среднего в каждом из отведений по всем областям коры головного мозга. Статистическая обработка данных проводилась при помощи прикладного пакета программ SPSS 20 for Windows. Для анализа различий между показателями в сравниваемых группах использовали t-критерий Стьюдента при условии нормального распределения, критерий Манна - Уитни при условии ненормального распределения. Критический уровень значимости (р) при проверке статистических гипотез принимался равным 0,05. Особенности взаимоотношений показателей энергообеспечения головного мозга анализировались с помощью факторного анализа с Варимакс-ротацией. Результаты Сравнительный анализ распределения УПП в состоянии относительного покоя выявил превышение энергозатрат у юношей в лобном (Fz), центральном (Cz) и правом височном (Td) отведениях на 9,3 %, а в левом височном (Ts) отведении на 44,7 % аналогичных показателей у девушек. В то же время в затылочном отведении энергозатраты у девушек на 10,7 % выше, чем у юношей (табл. 1). Таблица 1 Распределение уровня постоянного потенциала в монополяр-ных отведениях у молодых людей, проживающих в Арктическом регионе, в состоянии относительного покоя, mV Пока затель Юноши Девушки Fz 12,4 (8,4; 16,4); 142,5 % 11,5 (5,5; 17,5); 132,2 % Cz 18,4 (15,1; 21,8); 144,9 % 16,8 (12,1; 21,5); 132,3 % Oz 14,2 (10,8; 17,5); 166,7 % 15,9 (10,5; 21,2); 160,6 % Td 12,7 (8,97; 16,4); 135,1 % 11,5 (7,2; 15,9); 122,3 % Ts 13,8 (9,9; 17,6); 131,4 % 9,5 (4,97; 14,1); 90,4 % Sum 71,5 (56,5; 86,4); 139,6 % 65,2 (42,5; 87,9); 127,4 % Примечание. Данные представлены в виде среднего (M) и 95 % доверительного интервала; соотношение фактических величин к нормативам - в процентах. 18 Экология человека 2019.03 Экологическая физиология Суммарные значения УПП у юношей были на 46,6 % выше, чем у девушек. Максимальные значения ПП у лиц мужского пола выявлены в центральных отделах, причем меж-электродная разность с остальными отведениями находилася в пределах от 4,2 до 5,9 мВ (в среднем 5,2 мВ). Наибольшее отклонение фиксируется между центральным и лобным отведениями (5,9 мВ). Межвисочная разность потенциала, характеризующая межполушарную асимметрию Td-Ts, имеет отрицательное значение, указывающее на большую активность левого полушария (-1,1 мВ). Совсем иной характер имеет перераспределение УПП у девушек. Наибольшее значение потенциала также фиксируется в центральном отведении, однако разность с затылочной областью составляет всего 0,9 мВ, что свидетельствует о практически равных значениях потенциала в данных областях. Наибольший перепад энергозатрат регистрируется между центральным и левым височным отведениями (7,3 мВ). Межвисочная разность потенциалов указывает на преобладание правого полушария и составляет 2,0 мВ. Наименьшее значение УПП у девушек имеет левое височное отведение (табл. 2). Таблица 2 Распределение уровня постоянного потенциала по локальным отведениям и градиентам у молодых людей Арктического региона в состоянии относительного покоя, mV Гради- Фоновое распределение 10-я минута восстановительного периода ент Юноши Девушки Юноши Девушки FzCz -5,99 (-9,3; -2,7) -5,3 (-8,7; -1,9) -5,4 (-8,8; -1,98) -4,5 (-7,95; -1,1) FzOz -1,8 (-5,1; 1,6) -4,4 (-8,7; -0,01) -1,4 (-4,95; 2,1) -5,98 (-10,4; -1,6) FzTd -0,3 (-3,6; 3,1) -0,04 (-3,9; 3,8) 1,5 (-1,9; 4,96) 1,8 (-2,6; 6,1) FzTs -1,3 (-5,0; 2,3) 2,0 (-1,4; 5,4) ,4; -4, 8),7 2, -0, 1,8 (-2,3; 5,9) CzOz 4,2 (1,1; 7,4) 0,9 (-2,8; 4,7) 3,97 (0,6; 7,4)* -1,4 (-5,1; 2,2) CzTd 5,7 (2,3; 9,2) 5,3 (2,7; 7,8) 6,9 (3,9; 9,9) 6,3 (3,5; 9,2) CzTs 4,7 (0,9; 8,4) 7,3 (4,0; 10,5) 4,7 (1,5; 7,9) 6,3 (3,4; 9,3) OzTd 1,5 (-1,5; 4,5) 4,3 (0,9; 7,8) 2,9 (-0,3; 6,2)* 7,8 (4,1; 11,4) OzTs 0,4 (-2,4; 3,3) 6,4 (2,9; 9,8) 0,7 (-1,7; 3,2)* 7,8 (4,5; 11,1) TdTs -1,1 (-3,9; 1,7) 2,0 (-0,7; 4,7) -2,2 (-5,3; 0,8) 0,02 (-2,4; 2,4) FzX -1,9 (-4,1; 0,4) -1,5 (-4,1; 1,0) -1,2 (-3,6; 1,2) -1,4 (-4,2; 1,5) CzX 4,1 (1,9; 6,4) 3,8 (1,8; 5,7) 4,2 (2,1; 6,3) 3,2 (1,3; 4,96) OzX -0,1 (-1,95; 1,7) 2,8 (0,3; 5,4) 0,2 (-1,8; 2,2)* 4,6 (2,1; 7,1) TdX -1,6 (-3,5; 0,3) -1,5 (-3,3; 0,3) -2,7 (-4,7; -0,8) -3,2 (-5,2; -1,1) TsX ,6; -2, )* (-,6),5 1, o° -3,5 (-5,4; -1,7) ,4; -2, )*,5 1, -0, -3,2 (-5,0; -1,4) Примечание. Данные представлены в виде среднего (M) и 95 % доверительного интервала; * - статистическая значимость отличий между показателями УПП у юношей и девушек р < 0,05. При холодовой пробе в обеих группах фиксировалось увеличение значений УПП по всем отведениям: в среднем на 6,7 % (0,9 мВ) у юношей и на 10,6 % (1,5 мВ) у девушек. Каких-либо существенных изменений в распределении УПП по отделам ГМ не зафиксировано (рис. 1). А мВ 25 Y Fz Cz Oz Td Ts ■ фон ® охлаждение ИЮ минута Рис. 1. Изменение значений уровня постоянного потенциала при охлаждении и в течение восстановительного периода у юношей (А) и девушек (Б) На протяжении всего десятиминутного восстановительного периода значения УПП продолжали увеличиваться по всем отведениям как у юношей, так и у девушек. К концу десятой минуты в группе юношей максимальный рост УПП был зафиксирован в отведениях Fz и Oz (рис. 2). В группе девушек к концу восстановительного периода наибольший рост значений произошел в левом височном отделе и во фронтальных отделах. В среднем увеличение значений УПП к концу восстановительного периода произошло на 14,3 % в группе юношей и на 29,9 % в группе девушек (табл. 3). Таблица 3 Распределение уровня постоянного потенциала в монополярных отведениях у молодых людей, проживающих в Арктическом регионе, на десятой минуте восстановительного периода, mV Показатель Юноши Девушки Fz 15,1 (11,2; 19,1) 15,4 (9,6; 21,2) Cz 20,5 (16,9; 24,1) 19,97 (15,4; 24,6) Oz 16,5 (13,2; 19,8) 21,4 (15,8; 27,0) Td 13,6 (9,9; 17,3) 13,7 (8,7; 18,6) Ts 15,8 (12,3; 19,3) 13,6 (8,9; 18,3) Sum 81,5 (66,6; 96,3) 84,1 (60,9; 107,3) Примечание. Данные представлены в виде среднего (M) и 95 % доверительного интервала. 19 Экологическая физиология Экология человека 2019.03 Рис. 2. Факторная структура церебральных энергетических процессов у молодых людей, проживающих в Арктической зоне, в состоянии относительного покоя (А) и на десятой минуте восстановительного периода (Б) Факторный анализ с использованием Варимакс-ротации выявил следующие особенности энергообеспечения отделов головного мозга у молодых людей, проживающих в Арктическом регионе страны. Так, у юношей в состоянии покоя на первый план выходит фактор «энергозатраты в центральных отделах» (с информативностью 35,0 %). Второй фактор «энергозатраты в лобных отделах» (25,6 %) и третий фактор «энергозатраты в правом височном и затылочном отделов» (22,2 %). После холодового стресса второй фактор сменяет первый и выходит на первый план (34,5 и 24,6 %). Третий фактор остается без изменений (22,9 %). Далее на протяжении десятиминутного восстановительного периода смены факторной структуры не происходило (рис. 3). У девушек в состоянии покоя, а также на протяжении всей холодовой пробы и всего восстановительного периода факторная структура церебрального энергообмена коры ГМ оставалась без изменений. Первым с информативностью 33,7 % выступает «фактор энергозатрат в лобных отделах». Вторым - «фактор энергозатрат в затылочных долях» (28,9 %). Третьим - «фактор энергозатрат левого височного и центрального отделов» (24,3 %) (см. рис. 2). Обсуждение Превышение энергозатрат ГМ у молодых людей может быть связано с адаптивными реакциями энергообменных процессов, происходящими в ЦНС, причем у юношей выше значения в центральных и лобных отведениях, а у девушек - в затылочных отделах [1, 3]. Одним из критериев эффективного энергообмена головного мозга является распределения УПП в форме купола («куполообразность») - когда максимальные значения имеют центральные отведения, и затем амплитуда потенциала плавно снижается к периферии. Данный принцип соблюдался в группе юношей в течение всего времени исследования. Таким образом, основной принцип «куполообразности» УПП у лиц мужского пола соблюдается. У лиц женского пола принцип «куполообразности» нарушен, поскольку распределение УПП в центральном и затылочном отведениях отличаются незначительно (менее 1,0 мВ). У юношей отмечается межполушарная асимметрия 20 Экология человека 2019.03 Экологическая физиология Рис. 3. Профиль распределения уровня постоянного потенциала головного мозга у молодых людей Архангельского региона на десятой минуте реакции на холодовой стресс Примечание. За 100 % приняты исходные данные значения. энергообменных процессов ГМ с доминированием левого полушария. Однако у девушек уже в фоновом распределении значения затылочной области (Oz) были в среднем всего лишь на 1 мВ ниже амплитуды ПП центрального отведения (Cz), а на пятой минуте восстановительного периода превысили значения Cz на 0,6 мВ. К десятой минуте превышение составило 1,4 мВ. У девушек межвисочная разность потенциалов указывает на преобладание правого полушария, что характерно для людей, проживающих в условиях Севера. В группе юношей на протяжении всего исследования преобладают значения левого полушария. К концу восстановительного периода левополушарное доминирование усиливается. В группе девушек, напротив, в фоновом распределении преобладают значения правого полушария. Однако при проведении холодовой пробы и в течение восстановительного периода доминирование правого полушария снижается, и к концу десятой минуты значение межвисочной разности практически достигает нуля (Td-Ts = 0,02 мВ). К концу восстановительного периода значения амплитуды ПП в отведении Ts возросли на 4,1 мВ, в то время как значения в отведении Td лишь на 2,1 мВ. Активация значений левого полушария при холодо-вом стрессе у юношей, проживающих в Арктической зоне, может свидетельствовать об устойчивых механизмах адаптации на уровне ЦНС при воздействии низких температур [2, 12, 19]. Коре больших полушарий принадлежит особая роль в регуляции висцеральных систем организма. Сенсорные сигналы от рецепторов к корковым уровням модулируются церебральными механизмами, контроль за которыми осуществляет ретикулярная формация ствола мозга. Изменения корково-висцеральных взаимоотношений могут происходить только при функциональном взаимодействии «коркового» и лимбического уровней, приводящем к повышению активности коры при одновременном угнетении активности подкорковых систем, что приводит к более упорядоченной обработке сенсорной информации при одновременном снижении эмоционального напряжения [7, 10, 15, 17]. Как правило, адаптационные перестройки организма связывают с активацией правого полушария [10]. Правое полушарие, более автономно, чем левое, и менее подвержено влиянию корригирующих обратных связей. У девушек наблюдается увеличение значений УПП в затылочной области с повышением активности правого полушария. Затылочная область коры ГМ, включающая в себя ассоциативные поля зрительных и сенсорных анализаторов, обеспечивает анализ и формирование стереотипов поведения при изменении внешних условий [9, 15]. Факторный анализ, показал, что у юношей и девушек, проживающих в Арктической зоне Российской Федерации, нейрофизиологические механизмы в коре ГМ как в покое, так и при холодовом стрессе имеют различный характер. Нейрофизиологические процессы, связанные с энергообеспечением ГМ, у девушек протекают более напряженно, что находит свое отражение в повышенных значениях УПП во фронтальных отделах ГМ и в покое, и при холодовом стрессе. У юношей же в состоянии покоя отмечаются высокие значения энергозатрат в центральных отделах ГМ, а при холодовом стрессе энергозатраты возрастают во фронтальных отделах и снижаются в центральных, что свидетельствует о повышении роли управляющих систем и централизации регуляторных процессов как проявлении адаптивных реакций. Исследование выполнено при финансовой поддержке РФФИ и Правительства Архангельской области в рамках научного проекта № 18-44-290006. Авторство Грибанову А. В. принадлежит идея статьи, он внес существенный вклад в получение, анализ и интерпретацию данных, подготовил окончательный вариант статьи; Аникина Н. Ю. внесла существенный вклад в проведение исследования, участвовала в анализе и интерпретации данных, подготовке статьи; Кожевникова И. С. внесла существенный 21 Экологическая физиология Экология человека 2019.03 вклад в проведение исследования, участвовала в анализе и интерпретации данных, подготовке статьи; Малявская С. И. участвовала в анализе и интерпретации данных, подготовке статьи; Панков М. Н. внес существенный вклад в проведение исследования, участвовал в анализе и интерпретации данных, подготовке статьи. Грибанов Анатолий Владимирович - SPIN 2788-8167; ORCID 0000-0002-4714-6408 Аникина Наталья Юрьевна - SPIN 1168-4705 Кожевникова Ирина Сергеевна - SPIN 2441-23-63 Малявская Светлана Ивановна - SPIN 6257-4400 Панков Михаил Николаевич - SPIN 6341-9324.
×

Об авторах

А В Грибанов

ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова»; ФГБОУ ВО «Северный государственный медицинский университет» Министерства здравоохранения Российской Федерации

г. Архангельск

Н Ю Аникина

ФГБОУ ВО «Северный государственный медицинский университет» Министерства здравоохранения Российской Федерации

г. Архангельск

И С Кожевникова

ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова»; ФГБОУ ВО «Северный государственный медицинский университет» Министерства здравоохранения

Email: kogevnikovais@yandex.ru
кандидат биологических наук, старший научный сотрудник НИЛ функциональных резервов организма института медико-биологических исследований 163002, г. Архангельск, наб. Северной Двины

С И Малявская

ФГБОУ ВО «Северный государственный медицинский университет» Министерства здравоохранения Российской Федерации

г. Архангельск

М Н Панков

ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова»; ФГБОУ ВО «Северный государственный медицинский университет» Министерства здравоохранения Российской Федерации

г. Архангельск

Список литературы

  1. Аникина Н. Ю., Грибанов А. В. Церебральные энергетические процессы у студентов, проживающих на территории Арктической зоны // Агаджаняновские чтения: материалы II Всероссийской научно-практической конференции. Посвящается 90-летию со дня рождения академика Н. А. Агаджаняна. 2018. С. 22-23.
  2. Грибанов А. В., Аникина Н. Ю. Распределение уровня постоянных потенциалов головного мозга у иностранных студентов при локальном охлаждении во влажной среде (на примере вузов г. Архангельска) // Журнал медикобиологических исследований. 2017. Т. 5, № 1. С. 5-15.
  3. Грибанов А. В., Аникина Н. Ю., Гудков А. Б. Церебральный энергообмен как маркер адаптивных реакций человека в природно-климатических условиях Арктической зоны Российской Федерации // Экология человека. 2018. № 8. С. 32-40.
  4. Грибанов А. В., Депутат И. С. Распределение уровня постоянных потенциалов головного мозга у пожилых женщин в циркумполярных условиях // Физиология человека. 2015. Т. 41, № 3. С. 134-136.
  5. Грибанов А. В., Панков М. Н., Подоплекин А. Н. Уровень постоянных потенциалов головного мозга у детей при синдроме дефицита внимания с гиперактивностью // Физиология человека. 2009. Т. 35, № 6. С. 43-48.
  6. Гудков А. Б., Попова О. Н., Скрипаль Б. А. Реакция системы внешнего дыхания на локальное охлаждение у молодых лиц трудоспособного возраста // Медицина труда и промышленная экология. 2009. № 4. С. 26-30.
  7. Дёмин Д. Б., Поскотинова Л. В., Кривоногова Е. В. Сравнительная оценка изменений структуры ЭЭГ при кардиотренинге у подростков приполярных и заполярных территорий Севера // Российский физиологический журнал им. И. М. Сеченова. 2014. Т. 100, № 1. С. 128-138.
  8. Кривощеков С. Г., Диверт Г. М. Принципы физиологической регуляции функций организма при незавершенной адаптации // Физиология человека. 2001. Т. 27, № 1. С. 127-133.
  9. Куликов В. Ю., Антропова Л. К., Козлова Л. А. Влияние функциональной асимметрии мозга на стратегию поведения индивида в стрессовой ситуации // Медицина и образование в Сибири. 2010. № 5. С. 10.
  10. Леутин В. П., Николаева Е. И., Фомина Е. В. Функциональная асимметрия мозга и незавершенная адаптация // Руководство по функциональной межполушарной асимметрии. М.: Научный мир, 2009. 836 с
  11. Никитин Ю. П., Хаснулин Ю. В., Гудков А. Б. Итоги деятельности академии полярной медицины и экстремальной экологии человека за 1995-2015 года: современные проблемы северной медицины и усилия учёных по их решению // Медицина Кыргызстана. 2015. Т. 1, № 2. С. 8-14.
  12. Севостьянова Е. В., Хаснулин В. И. Влияние типа функциональной межполушарной асимметрии головного мозга на формирование устойчивости организма человека к экстремальным геоэкологическим факторам // Бюллетень Сибирского отделения Российской академии медицинских наук. 2010. Т. 30, № 5. С. 113-119.
  13. Фокин В. Ф. Динамическая функциональная асимметрия как отражение функционального состояния // Асимметрия. 2007. Т. 1, № 1. С. 4-9.
  14. Фокин В. Ф., Пономарева Н. В. Энергетическая физиология мозга. М.: Антидор, 2003. 288 с.
  15. Хаснулин В. И., Хаснулина А. В., Безпрозван-ная Е. А. Асимметрии функциональной активности полушарий мозга и обеспечение эффективной адаптации к геоэкологическим факторам высоких широт // Мир науки, культуры, образования. 2011. № 2. С. 308-31 1.
  16. Чащин В. П., Гудков А. Б., Чащин М. В., Попова О. Н. Предиктивная оценка индивидуальной восприимчивости организма человека к опасному воздействию холода // Экология человека. 2017. № 5. С. 3-13.
  17. Delahaij R., Gaillard A. W. K., & Dam K. Hardiness and the response to stressful situations : Investigating mediating processes // Personality and Individual Differences. 2010. Vol. 49. P. 386-390.
  18. Everly G. S., Lating J. M. The Concept of Stress // A Clinical Guide to the Treatment of the Human Stress Response. Springer, NY, 2013. P. 3-15.
  19. Fan S., Hansen M. E., Lo Y., Tishkoff S. A. Going global by adapting local: a review of recent human adaptation // Science. 2016. Vol. 354. P. 54-59.
  20. Selye H. The stress concept and some of its implications // V Hamilton & D. M. Warburton (Eds.). Human Stress and Cognition: An Information Processing Approach. New York: Wiley, 1979.
  21. Yang H. Analysis on Social Adaptation Ability of Graduating Students // Du W. (eds). Informatics and Management Science IV. Lecture Notes in Electrical Engineering, Vol. 207. Springer, London, 2013.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Экология человека, 2019



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 78166 от 20.03.2020.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах