VEGFR2 Mimicking Peptide Inhibits the Proliferation of Human Umbilical Vein Endothelial Cells (Huvecs) by Blocking VEGF


Cite item

Full Text

Abstract

Introduction:A variety of key human physiological processes rely on angiogenesis, ranging from reproduction and fetal growth to wound healing and tissue repair. Furthermore, this process significantly contributes to tumor progression, invasion, and metastasis. As the strongest inducer of angiogenesis, Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) are targets of therapeutic research for blocking pathological angiogenesis.

Objective: Preventing the interaction between VEGF and VEGFR2 by a peptide is a promising strategy for developing antiangiogenic drug candidates. This study was aimed at designing and evaluating VEGF-targeting peptides using in silico and in vitro techniques.

Methods: The VEGF binding site of VEGFR2 was considered a basis for peptide design. The interaction of VEGF and all three peptides derived from VEGFR2 were analyzed using ClusPro tools. In a complex with VEGF, the peptide with a higher docking score was evaluated to confirm its stability using molecular dynamics (MD) simulation. The gene coding for the selected peptide was cloned and expressed in E. coli BL21. The bacterial cells were cultured on a large scale, and the expressed recombinant peptide was purified using Ni-NTA chromatography. Refolding of the denatured peptide was carried out by the stepwise removal of the denaturant. The reactivity of peptides was confirmed using western blotting and enzyme-linked immunosorbent assay (ELISA) assays. Finally, the inhibition potency of the peptide on human umbilical vein endothelial cells was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- 2H-tetrazolium bromide (MTT) assay

Results: Among three peptides, the peptide with the best docking pose and the highest affinity for VEGF was selected for further studies. Then the stability of the peptide was confirmed over the 100 ns MD simulation. After in silico analyses, the selected peptide was presented for in vitro analysis. Expression of the selected peptide in E. coli BL21 resulted in a pure peptide with a yield of approximately 200 µg/ml. Analysis by ELISA revealed the high reactivity of the peptide with VEGF. Western blot analysis confirmed the specific reactivity of selected peptides with VEGF. The MTT assay revealed the growth inhibitory effect of the peptide on human umbilical vein endothelial cells with an IC50 value of 247.8 µM.

Conclusion: In summary, the selected peptide demonstrated a promising inhibitory effect on human umbilical vein endothelial cells that could be a valuable anti-angiogenic candidate for further assessment. Additionally, these in silico and in vitro data provide new insights into peptide design and engineering.

About the authors

Samaneh Ghasemali

Department of Medical Biotechnology, School of Advanced Medical Sciences,, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Abolfazl Barzegar

Department of Biology, Faculty of Natural Science, University of Tabriz

Email: info@benthamscience.net

Safar Farajnia

Drug Applied Research Center, Tabriz University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Mohammad Rahmati

Department of Clinical Biochemistry, Faculty of Medicine,, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Babak Negahdari

Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS)

Email: info@benthamscience.net

Ali Etemadi

Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS)

Email: info@benthamscience.net

Atefeh Nazari

Biotechnology Research Center, Tabriz University of Medical Sciences,

Email: info@benthamscience.net

References

  1. Ghasemali, S.; Farajnia, S.; Barzegar, A.; Rahmati-Yamchi, M.; Baghban, R.; Rahbarnia, L.; Nodeh, H.R.Y. New developments in anti-angiogenic therapy of cancer, review and update. Anticancer. Agents Med. Chem., 2020, 21(1), 3-19. doi: 10.2174/1871520620666200817103219 PMID: 32807068
  2. Ghasemali, S.; Farajnia, S.; Barzegar, A.; Rahmati-Yamchi, M.; Negahdari, B.; Rahbarnia, L.; Yousefi-Nodeh, H. Rational Design of anti-angiogenic peptides to inhibit VEGF/VEGFR2 interactions for cancer therapeutics. Anticancer. Agents Med. Chem., 2021, 22(10), 2026-2035. PMID: 34792006
  3. Szekanecz, Z.; Besenyei, T.; Paragh, G.; Koch, A.E. Angiogenesis in rheumatoid arthritis. Autoimmunity, 2009, 42(7), 563-573. doi: 10.1080/08916930903143083 PMID: 19863375
  4. Zhu, X.X.; Miao, X.Y.; Gong, Y.P.; Fu, B.; Li, C.L. Isolation and culture of rat aortic endothelial cells in vitro: A novel approach without collagenase digestion. J. Cell. Biochem., 2019, 120(8), 14127-14135. doi: 10.1002/jcb.28688 PMID: 31020704
  5. Batlle, R.; Andrés, E.; Gonzalez, L.; Llonch, E.; Igea, A.; Gutierrez-Prat, N.; Berenguer-Llergo, A.; Nebreda, A.R. Regulation of tumor angiogenesis and mesenchymal–endothelial transition by p38α through TGF-β and JNK signaling. Nat. Commun., 2019, 10(1), 3071. doi: 10.1038/s41467-019-10946-y PMID: 31296856
  6. Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature, 2005, 438(7070), 967-974. doi: 10.1038/nature04483 PMID: 16355214
  7. Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol., 2011, 27(1), 563-584. doi: 10.1146/annurev-cellbio-092910-154002 PMID: 21756109
  8. Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427. doi: 10.1038/nrd3455 PMID: 21629292
  9. Giacca, M.; Zacchigna, S. VEGF gene therapy: Therapeutic angiogenesis in the clinic and beyond. Gene Ther., 2012, 19(6), 622-629. doi: 10.1038/gt.2012.17 PMID: 22378343
  10. Melincovici, C.S. Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 2018, 59(2), 455-467. PMID: 30173249
  11. Kazemi-Lomedasht, F.; Behdani, M.; Pooshang Bagheri, K.; Habibi Anbouhi, M.; Abolhassani, M.; Khanahmad, H.; Shahbazzadeh, D.; Mirzahoseini, H. Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Adv. Pharm. Bull., 2014, 4(4), 323-328. PMID: 25436186
  12. Seyedarabi, A.; Cheng, L.; Zachary, I.; Djordjevic, S. Production of soluble human vascular endothelial growth factor VEGF-A165-heparin binding domain in Escherichia coli. PLoS One, 2013, 8(2)e55690 doi: 10.1371/journal.pone.0055690 PMID: 23409021
  13. Zahiri, J.; Khorsand-Ghaffari, B.; Zade, S.H.R.; Kargar, M.; Yousefi, A.A. AntAngioCOOL: An R package for computational detection of anti-angiogenic peptides. J. Transl. Med., 2017, 71233601 doi: 10.1101/233601
  14. Wijma, H.J.; Janssen, D.B. Computational design gains momentum in enzyme catalysis engineering. FEBS J., 2013, 280(13), 2948-2960. doi: 10.1111/febs.12324 PMID: 23647554
  15. Yeung, N.; Lin, Y.W.; Gao, Y.G.; Zhao, X.; Russell, B.S.; Lei, L.; Miner, K.D.; Robinson, H.; Lu, Y. Rational design of a structural and functional nitric oxide reductase. Nature, 2009, 462(7276), 1079-1082. doi: 10.1038/nature08620 PMID: 19940850
  16. Kazlauskas, R.J.; Bornscheuer, U.T. Finding better protein engineering strategies. Nat. Chem. Biol., 2009, 5(8), 526-529. doi: 10.1038/nchembio0809-526 PMID: 19620988
  17. Höhne, M.; Schätzle, S.; Jochens, H.; Robins, K.; Bornscheuer, U.T. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol., 2010, 6(11), 807-813. doi: 10.1038/nchembio.447 PMID: 20871599
  18. Yin, H.; Slusky, J.S.; Berger, B.W.; Walters, R.S.; Vilaire, G.; Litvinov, R.I.; Lear, J.D.; Caputo, G.A.; Bennett, J.S.; DeGrado, W.F. Computational design of peptides that target transmembrane helices. Science, 2007, 315(5820), 1817-1822. doi: 10.1126/science.1136782 PMID: 17395823
  19. Rismani, E.; Rahimi, H.; Arab, S.S.; Azadmanesh, K.; Karimipoor, M.; Teimoori-Toolabi, L. Computationally design of inhibitory peptides against Wnt signaling pathway: In silico insight on complex of DKK1 and LRP6. Int. J. Pept. Res. Ther., 2018, 24(1), 49-60. doi: 10.1007/s10989-017-9589-1
  20. Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143. doi: 10.1016/j.neuron.2018.08.011 PMID: 30236283
  21. Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci., 1997, 22(12), 488-490. doi: 10.1016/S0968-0004(97)01140-7 PMID: 9433130
  22. Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
  23. Laskowski, R.A. Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134. doi: 10.1002/pro.3289 PMID: 28875543
  24. Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
  25. Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738. doi: 10.1038/nprot.2010.5 PMID: 20360767
  26. Baghban, R.; Farajnia, S.; Ghasemi, Y.; Mortazavi, M.; Ghasemali, S.; Zakariazadeh, M.; Zarghami, N.; Samadi, N. Engineering of ocriplasmin variants by bioinformatics methods for the reduction of proteolytic and autolytic activities. Iran. J. Med. Sci., 2021, 46(6), 454-467. PMID: 34840386
  27. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8. doi: 10.1038/nmeth.3213 PMID: 25549265
  28. Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys., 2020, 22(6), 3149-3159. doi: 10.1039/C9CP06303J PMID: 31995074
  29. Sharifi, M.; Ezzati Nazhad Dolatabadi, J.; Fathi, F.; Zakariazadeh, M.; Barzegar, A.; Rashidi, M.; Tajalli, H.; Rashidi, M.R. Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: Kinetic and thermodynamic analysis. Bioimpacts, 2017, 7(2), 91-97. doi: 10.15171/bi.2017.12 PMID: 28752073
  30. Baghban, R.; Ghasemali, S.; Farajnia, S.; Hoseinpoor, R.; Andarzi, S.; Zakariazadeh, M.; Zarredar, H. Design and In Silico evaluation of a novel cyclic disulfide-rich anti-VEGF peptide as a potential antiangiogenic drug. Int. J. Pept. Res. Ther., 2021, 27(4), 2245-2256. doi: 10.1007/s10989-021-10250-8
  31. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H
  32. Flores-Canales, J.C.; Kurnikova, M. Targeting electrostatic interactions in accelerated molecular dynamics with application to protein partial unfolding. J. Chem. Theory Comput., 2015, 11(6), 2550-2559. doi: 10.1021/ct501090y PMID: 26575554
  33. Garg, V.K.; Avashthi, H.; Tiwari, A.; Jain, P.A.; Ramkete, P.W.R.; Kayastha, A.M.; Singh, V.K. MFPPI–multi FASTA ProtParam interface. Bioinformation, 2016, 12(2), 74-77. doi: 10.6026/97320630012074 PMID: 28104964
  34. Baghban, R.; Farajnia, S.; Ghasemi, Y.; Hoseinpoor, R.; Safary, A.; Mortazavi, M.; Zarghami, N. Mutational analysis of Ocriplasmin to reduce proteolytic and autolytic activity in Pichia pastoris. Biol. Proced. Online, 2020, 22(1), 25. doi: 10.1186/s12575-020-00138-0 PMID: 33308171
  35. London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199. doi: 10.1016/j.str.2009.11.012 PMID: 20159464
  36. Courtois, F.; Agrawal, N.J.; Lauer, T.M.; Trout, B.L. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs, 2016, 8(1), 99-112.
  37. Rouet, R.; Lowe, D.; Christ, D. Stability engineering of the human antibody repertoire. FEBS Lett., 2014, 588(2), 269-277. doi: 10.1016/j.febslet.2013.11.029 PMID: 24291820
  38. Zashikhina, N.; Sharoyko, V.; Antipchik, M.; Tarasenko, I.; Anufrikov, Y.; Lavrentieva, A.; Tennikova, T.; Korzhikova-Vlakh, E. Novel formulations of c-peptide with long-acting therapeutic potential for treatment of diabetic complications. Pharmaceutics, 2019, 11(1), 27. doi: 10.3390/pharmaceutics11010027 PMID: 30641932
  39. Guryanov, I.; Tennikova, T.; Urtti, A. Peptide inhibitors of vascular endothelial growth factor A: Current situation and perspectives. Pharmaceutics, 2021, 13(9), 1337. doi: 10.3390/pharmaceutics13091337 PMID: 34575413
  40. Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403. doi: 10.1038/nrd.2015.17 PMID: 26775688
  41. Zhang, X.; Feng, S.; Liu, J.; Li, Q.; Zheng, L.; Xie, L.; Li, H.; Huang, D. Novel small peptides derived from VEGF 125-136: Potential drugs for radioactive diagnosis and therapy in A549 tumor-bearing nude mice. Sci. Rep., 2017, 7(1), 1-13. PMID: 28127051
  42. Zanella, S.; Bocchinfuso, G.; De Zotti, M.; Arosio, D.; Marino, F.; Raniolo, S.; Pignataro, L.; Sacco, G.; Palleschi, A.; Siano, A.S.; Piarulli, U.; Belvisi, L.; Formaggio, F.; Gennari, C.; Stella, L. Rational design of antiangiogenic helical oligopeptides targeting the vascular endothelial growth factor receptors. Front Chem., 2019, 7, 170. doi: 10.3389/fchem.2019.00170 PMID: 30984741
  43. Farzaneh Behelgardi, M.; Zahri, S.; Mashayekhi, F.; Mansouri, K.; Asghari, S.M. A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci. Rep., 2018, 8(1), 17924. doi: 10.1038/s41598-018-36394-0 PMID: 30560942
  44. Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc., 2017, 12(2), 255-278. doi: 10.1038/nprot.2016.169 PMID: 28079879

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers