Antitumor Mechanisms of Molecules Secreted by Trypanosoma cruzi in Colon and Breast Cancer: A Review
- Authors: Sadr S.1, Ghiassi S.2, Lotfalizadeh N.3, Simab P.4, Hajjafari A.5, Borji H.6
-
Affiliations:
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhadd
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad
- Department of Clinical Sciences, Faculty of Veterinary Medicine,, Ferdowsi University of Mashhad
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University
- Department of Pathobiology, Faculty of Veterinary Medicine,, Islamic Azad University, Science and Research Branch
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad
- Issue: Vol 23, No 15 (2023)
- Pages: 1710-1721
- Section: Oncology
- URL: https://hum-ecol.ru/1871-5206/article/view/694344
- DOI: https://doi.org/10.2174/1871520623666230529141544
- ID: 694344
Cite item
Full Text
Abstract
Background: Molecules secreted by Trypanosoma cruzi (T. cruzi) have beneficial effects on the immune system and can fight against cancer by inhibiting the growth of tumor cells, preventing angiogenesis, and promoting immune activation.
Objective: This study aimed to investigate the effects of molecules secreted by Trypanosoma cruzi on the growth of colon and breast cancer cells, to understand the underlying mechanisms of action.
Results: Calreticulin from T. cruzi, a 45 kDa protein, participates in essential changes in the tumor microenvironment by triggering an adaptive immune response, exerting an antiangiogenic effect, and inhibiting cell growth. On the other hand, a 21 kDa protein (P21) secreted at all stages of the parasite's life cycle can inhibit cell invasion and migration. Mucins, such as Tn, sialyl-Tn, and TF, are present both in tumor cells and on the surface of T. cruzi and are characterized as common antigenic determinants, inducing a cross-immune response. In addition, molecules secreted by the parasite are used recombinantly in immunotherapy against cancer for their ability to generate a reliable and long-lasting immune response.
Conclusion: By elucidating the antitumor mechanisms of the molecules secreted by T. cruzi, this study provides valuable insights for developing novel therapeutic strategies to combat colon and breast cancer.
Keywords
About the authors
Soheil Sadr
Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhadd
Email: info@benthamscience.net
Shakila Ghiassi
Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad
Email: info@benthamscience.net
Narges Lotfalizadeh
Department of Clinical Sciences, Faculty of Veterinary Medicine,, Ferdowsi University of Mashhad
Email: info@benthamscience.net
Pouria Simab
Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University
Email: info@benthamscience.net
Ashkan Hajjafari
Department of Pathobiology, Faculty of Veterinary Medicine,, Islamic Azad University, Science and Research Branch
Email: info@benthamscience.net
Hassan Borji
Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad
Author for correspondence.
Email: info@benthamscience.net
References
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics, 2021, 13(10), 1562. doi: 10.3390/pharmaceutics13101562 PMID: 34683855
- Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol., 2021, 35(11), e22900. doi: 10.1002/jbt.22900 PMID: 34462987
- Araghi, M.; Soerjomataram, I.; Jenkins, M.; Brierley, J.; Morris, E.; Bray, F.; Arnold, M. Global trends in colorectal cancer mortality: projections to the year 2035. Int. J. Cancer, 2019, 144(12), 2992-3000. doi: 10.1002/ijc.32055 PMID: 30536395
- Joseph, D.A.; King, J.B.; Dowling, N.F.; Thomas, C.C.; Richardson, L.C. Vital signs: Colorectal cancer screening test useUnited States, 2018. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(10), 253-259. doi: 10.15585/mmwr.mm6910a1 PMID: 32163384
- Hussain, A.M.A.; Lafta, R.K. Cancer trends in Iraq 20002016. Oman Med. J., 2021, 36(1), e219. doi: 10.5001/omj.2021.18 PMID: 33552559
- Kow, A.W.C. Hepatic metastasis from colorectal cancer. J. Gastrointest. Oncol., 2019, 10(6), 1274-1298. doi: 10.21037/jgo.2019.08.06 PMID: 31949948
- Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. Semin. Cancer Biol., 2021, 68, 279-290. doi: 10.1016/j.semcancer.2020.03.011 PMID: 32437876
- Gao, Q.; Feng, J.; Liu, W.; Wen, C.; Wu, Y.; Liao, Q.; Zou, L.; Sui, X.; Xie, T.; Zhang, J.; Hu, Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev., 2022, 188, 114445. doi: 10.1016/j.addr.2022.114445 PMID: 35820601
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs., 2019, 35(2), 151-156. doi: 10.1016/j.soncn.2019.02.001 PMID: 30867104
- Liang, J.L.; Luo, G.F.; Chen, W.H.; Zhang, X.Z. Recent advances in engineered materials for immunotherapy‐involved combination cancer therapy. Adv. Mater., 2021, 33(31), 2007630. doi: 10.1002/adma.202007630 PMID: 34050564
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer, 2021, 21(6), 360-378. doi: 10.1038/s41568-021-00346-0 PMID: 33907315
- Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines, 2019, 4(1), 7. doi: 10.1038/s41541-019-0103-y PMID: 30774998
- Eissa, M.M.; Ismail, C.A.; El-Azzouni, M.Z.; Ghazy, A.A.; Hadi, M.A. Immuno-therapeutic potential of Schistosoma mansoni and Trichinella spiralis antigens in a murine model of colon cancer. Invest. New Drugs, 2019, 37(1), 47-56. doi: 10.1007/s10637-018-0609-6 PMID: 29808307
- Darani, H.Y.; Yousefi, M. Parasites and cancers: Parasite antigens as possible targets for cancer immunotherapy. Future Oncol., 2012, 8(12), 1529-1535. doi: 10.2217/fon.12.155 PMID: 23231515
- Guan, W.; Zhang, X.; Wang, X.; Lu, S.; Yin, J.; Zhang, J. Employing parasite against cancer: A lesson from the canine tapeworm Echinococcus granulocus. Front. Pharmacol., 2019, 10, 1137. doi: 10.3389/fphar.2019.01137 PMID: 31607934
- Yousofi Darani, H.; Daneshpour, S.; Kefayat, A.H.; Mofid, M.R.; Rostami Rad, S. Effect of hydatid cyst fluid antigens on induction of apoptosis on breast cancer cells. Adv. Biomed. Res., 2019, 8(1), 27. doi: 10.4103/abr.abr_220_18 PMID: 31123670
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules, 2018, 23(11), 2846. doi: 10.3390/molecules23112846 PMID: 30388847
- Huang, J.; Yang, B.; Peng, Y.; Huang, J.; Wong, S.H.D.; Bian, L.; Zhu, K.; Shuai, X.; Han, S. Nanomedicine‐boosting tumor immunogenicity for enhanced immunotherapy. Adv. Funct. Mater., 2021, 31(21), 2011171. doi: 10.1002/adfm.202011171
- Junqueira, C.; Santos, L.I.; Galvão-Filho, B.; Teixeira, S.M.; Rodrigues, F.G.; DaRocha, W.D.; Chiari, E.; Jungbluth, A.A.; Ritter, G.; Gnjatic, S.; Old, L.J.; Gazzinelli, R.T. Trypanosoma cruzi as an effective cancer antigen delivery vector. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19695-19700. doi: 10.1073/pnas.1110030108 PMID: 22114198
- Chen, L.; He, Z.; Qin, L.; Li, Q.; Shi, X.; Zhao, S.; Chen, L.; Zhong, N.; Chen, X. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS One, 2011, 6(9), e24407. doi: 10.1371/journal.pone.0024407 PMID: 21931708
- Berriel, E.; Russo, S.; Monin, L.; Festari, M.F.; Berois, N.; Fernández, G.; Freire, T.; Osinaga, E. Antitumor activity of human hydatid cyst fluid in a murine model of colon cancer. Sc. World J. , 2013, 2013, 1-7. doi: 10.1155/2013/230176 PMID: 24023528
- Ubillos, L.; Freire, T.; Berriel, E.; Chiribao, M.L.; Chiale, C.; Festari, M.F.; Medeiros, A.; Mazal, D.; Rondán, M.; Bollati-Fogolín, M.; Rabinovich, G.A.; Robello, C.; Osinaga, E. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers. Int. J. Cancer, 2016, 138(7), 1719-1731. doi: 10.1002/ijc.29910 PMID: 26519949
- Baird, J.R.; Fox, B.A.; Sanders, K.L.; Lizotte, P.H.; Cubillos-Ruiz, J.R.; Scarlett, U.K.; Rutkowski, M.R.; Conejo-Garcia, J.R.; Fiering, S.; Bzik, D.J. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res., 2013, 73(13), 3842-3851. doi: 10.1158/0008-5472.CAN-12-1974 PMID: 23704211
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166. doi: 10.3389/fpubh.2019.00166 PMID: 31312626
- Echavarría, N.G.; Echeverría, L.E.; Stewart, M.; Gallego, C.; Saldarriaga, C. Chagas disease: Chronic chagas cardiomyopathy. Curr. Probl. Cardiol., 2021, 46(3), 100507. doi: 10.1016/j.cpcardiol.2019.100507 PMID: 31983471
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94. doi: 10.1016/S0140-6736(17)31612-4 PMID: 28673423
- Martín-Escolano, J.; Marín, C.; Rosales, M.J.; Tsaousis, A.D.; Medina-Carmona, E.; Martín-Escolano, R. An updated view of the Trypanosoma cruzi life cycle: Intervention points for an effective treatment. ACS Infect. Dis., 2022, 8(6), 1107-1115. doi: 10.1021/acsinfecdis.2c00123 PMID: 35652513
- Bivona, A.E.; Alberti, A.S.; Cerny, N.; Trinitario, S.N.; Malchiodi, E.L. Chagas disease vaccine design: The search for an efficient Trypanosoma cruzi immune-mediated control. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5), 165658. doi: 10.1016/j.bbadis.2019.165658 PMID: 31904415
- Villanueva-Lizama, L.E.; Cruz-Chan, J.V.; Versteeg, L.; Teh-Poot, C.F.; Hoffman, K.; Kendricks, A.; Keegan, B.; Pollet, J.; Gusovsky, F.; Hotez, P.J.; Bottazzi, M.E.; Jones, K.M. TLR4 agonist protects against Trypanosoma cruzi acute lethal infection by decreasing cardiac parasite burdens. Parasite Immunol., 2020, 42(10), e12769. doi: 10.1111/pim.12769 PMID: 32592180
- Acosta, R.E.V.; Araujo, F.C.L.; Fiocca, V.F.; Montes, C.L.; Gruppi, A. Understanding CD8+ T cell immunity to Trypanosoma cruzi and how to improve it. Trends Parasitol., 2019, 35(11), 899-917. doi: 10.1016/j.pt.2019.08.006 PMID: 31607632
- Ramírez-Toloza, G.; Sosoniuk-Roche, E.; Valck, C.; Aguilar-Guzmán, L.; Ferreira, V.P.; Ferreira, A. Trypanosoma cruzi calreticulin: Immune evasion, infectivity, and tumorigenesis. Trends Parasitol., 2020, 36(4), 368-381. doi: 10.1016/j.pt.2020.01.007 PMID: 32191851
- Borges, B.C.; Uehara, I.A.; dos Santos, M.A.; Martins, F.A.; de Souza, F.C.; Junior, Á.F.; da Luz, F.A.C.; da Costa, M.S.; Notário, A.F.O.; Lopes, D.S.; Teixeira, S.C.; Teixeira, T.L.; de Castilhos, P.; da Silva, C.V.; Silva, M.J.B. The recombinant protein based on Trypanosoma cruzi P21 interacts with CXCR4 receptor and abrogates the invasive phenotype of human breast cancer cells. Front. Cell Dev. Biol., 2020, 8, 569729. doi: 10.3389/fcell.2020.569729 PMID: 33195200
- Garcia, S.B.; Aranha, A.L.; Garcia, F.R.B.; Basile, F.V.; Pinto, A.P.M.; Oliveira, E.C.; Zucoloto, S. A retrospective study of histopathological findings in 894 cases of megacolon: What is the relationship between megacolon and colonic cancer? Rev. Inst. Med. Trop. São Paulo, 2003, 45(2), 91-93. doi: 10.1590/S0036-46652003000200007 PMID: 12754574
- Menna-Barreto, R.F.S.; Salomão, K.; Dantas, A.P.; Santa-Rita, R.M.; Soares, M.J.; Barbosa, H.S.; de Castro, S.L. Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron, 2009, 40(2), 157-168. doi: 10.1016/j.micron.2008.08.003 PMID: 18849169
- de Castro Andreassa, E.; Santos, M.D.M.; Wassmandorf, R.; Wippel, H.H.; Carvalho, P.C.; Fischer, J.S.G.; Souza, T.A.C.B. Proteomic changes in Trypanosoma cruzi epimastigotes treated with the proapoptotic compound PAC-1. Biochim. Biophys. Acta. Proteins Proteomics, 2021, 1869(2), 140582. doi: 10.1016/j.bbapap.2020.140582 PMID: 33285319
- Atayde, V.D.; Jasiulionis, M.G.; Cortez, M.; Yoshida, N. A recombinant protein based on Trypanosoma cruzi surface molecule gp82 induces apoptotic cell death in melanoma cells. Melanoma Res., 2008, 18(3), 172-183. doi: 10.1097/CMR.0b013e3282feeaab PMID: 18477891
- Cardoso, M.S.; Reis-Cunha, J.L.; Bartholomeu, D.C. Evasion of the immune response by Trypanosoma cruzi during acute infection. Front. Immunol., 2016, 6, 659. doi: 10.3389/fimmu.2015.00659 PMID: 26834737
- Bunkofske, M.E.; Perumal, N.; White, B.; Strauch, E.M.; Tarleton, R. Epitopes in the glycosylphosphatidylinositol attachment signal peptide of Trypanosoma cruzi mucin proteins generate robust but delayed and nonprotective CD8+ T cell responses. J. Immunol., 2023, 210(4), 420-430. doi: 10.4049/jimmunol.2200723 PMID: 36603035
- Taylor, M.C.; Ward, A.; Olmo, F.; Jayawardhana, S.; Francisco, A.F.; Lewis, M.D.; Kelly, J.M. Intracellular DNA replication and differentiation of Trypanosoma cruzi is asynchronous within individual host cells in vivo at all stages of infection. PLoS Negl. Trop. Dis., 2020, 14(3), e0008007. doi: 10.1371/journal.pntd.0008007 PMID: 32196491
- Abras, A.; Ballart, C.; Fernández-Arévalo, A.; Pinazo, M.J.; Gascón, J.; Muñoz, C.; Gállego, M. Worldwide control and management of Chagas disease in a new era of globalization: A close look at congenital Trypanosoma cruzi infection. Clin. Microbiol. Rev., 2022, 35(2), e00152-e21. doi: 10.1128/cmr.00152-21 PMID: 35239422
- Carlier, Y.; Altcheh, J.; Angheben, A.; Freilij, H.; Luquetti, A.O.; Schijman, A.G.; Segovia, M.; Wagner, N.; Albajar Vinas, P. Congenital Chagas disease: Updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women. PLoS Negl. Trop. Dis., 2019, 13(10), e0007694. doi: 10.1371/journal.pntd.0007694 PMID: 31647811
- Guarner, J. Chagas disease as example of a reemerging parasite. Semin. Diagn. Pathol., 2019, 36(3), 164-169. doi: 10.1053/j.semdp.2019.04.008 PMID: 31006555
- Rios, L.; Campos, E.E.; Menon, R.; Zago, M.P.; Garg, N.J. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(3), 165591. doi: 10.1016/j.bbadis.2019.165591 PMID: 31678160
- Chatelain, E.; Konar, N. Translational challenges of animal models in Chagas disease drug development: A review. Drug Des. Devel. Ther., 2015, 9, 4807-4823. doi: 10.2147/DDDT.S90208 PMID: 26316715
- Pino-Marín, A.; Medina-Rincón, G.J.; Gallo-Bernal, S.; Duran-Crane, A.; Arango Duque, Á.I.; Rodríguez, M.J.; Medina-Mur, R.; Manrique, F.T.; Forero, J.F.; Medina, H.M. Chagas cardiomyopathy: From Romaña sign to heart failure and sudden cardiac death. Pathogens, 2021, 10(5), 505. doi: 10.3390/pathogens10050505 PMID: 33922366
- Zuma, A.A.; Dos Santos, B.E.; de Souza, W. Basic biology of Trypanosoma cruzi. Curr. Pharm. Des., 2021, 27(14), 1671-1732. doi: 10.2174/18734286MTEyDMDQ2z PMID: 33272165
- Bonfim-Melo, A.; Ferreira, E.R.; Florentino, P.T.V.; Mortara, R.A. Amastigote synapse: The tricks of Trypanosoma cruzi extracellular amastigotes. Front. Microbiol., 2018, 9, 1341. doi: 10.3389/fmicb.2018.01341 PMID: 30013522
- Araujo, F.C.L.; Tosello, B.J.; Rodriguez, C.; Canale, F.P.; Fiocca, V.F.; Boccardo, S.; Beccaria, C.G.; Adoue, V.; Joffre, O.; Gruppi, A.; Montes, C.L.; Acosta, R.E.V. Limited Foxp3+ regulatory T cells response during acute Trypanosoma cruzi infection is required to allow the emergence of robust parasite-specific CD8+ T cell immunity. Front. Immunol., 2018, 9, 2555. doi: 10.3389/fimmu.2018.02555 PMID: 30455700
- Díaz, L.I.M.; De Pablos, L.M.; Longhi, S.A.; Zago, M.P.; Schijman, A.G.; Osuna, A. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci. Rep., 2017, 7(1), 44451. doi: 10.1038/srep44451 PMID: 28294160
- das Dores Pereira, R.; Rabelo, R.A.N.; Leite, P.G.; Cramer, A.; Botelho, A.F.M.; Cruz, J.S.; Régis, W.C.B.; Perretti, M.; Teixeira, M.M.; Machado, F.S. Role of formyl peptide receptor 2 (FPR2) in modulating immune response and heart inflammation in an experimental model of acute and chronic Chagas disease. Cell. Immunol., 2021, 369, 104427. doi: 10.1016/j.cellimm.2021.104427
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691. doi: 10.1136/gutjnl-2015-310912 PMID: 26818619
- Kopetz, S.; Chang, G.J.; Overman, M.J.; Eng, C.; Sargent, D.J.; Larson, D.W.; Grothey, A.; Vauthey, J.N.; Nagorney, D.M.; McWilliams, R.R. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J. Clin. Oncol., 2009, 27(22), 3677-3683. doi: 10.1200/JCO.2008.20.5278 PMID: 19470929
- Sokolova, O.; Naumann, M. Crosstalk between DNA damage and inflammation in the multiple steps of gastric carcinogenesis. Curr. Top. Microbiol. Immunol., 2019, 421, 107-137.
- Ruan, H.; Leibowitz, B.J.; Zhang, L.; Yu, J. Immunogenic cell death in colon cancer prevention and therapy. Mol. Carcinog., 2020, 59(7), 783-793. doi: 10.1002/mc.23183 PMID: 32215970
- Paskeh, M.D.A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M.J.; Sabet, S.; Khoshbakht, M.A.; Hashemi, M.; Hushmandi, K.; Sethi, G.; Zarrabi, A.; Kumar, A.P.; Tan, S.C.; Papadakis, M.; Alexiou, A.; Islam, M.A.; Mostafavi, E.; Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol., 2022, 15(1), 83. doi: 10.1186/s13045-022-01305-4 PMID: 35765040
- Galli, F.; Aguilera, J.V.; Palermo, B.; Markovic, S.N.; Nisticò, P.; Signore, A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res., 2020, 39(1), 89. doi: 10.1186/s13046-020-01586-y PMID: 32423420
- Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res., 2020, 80, 101055. doi: 10.1016/j.plipres.2020.101055 PMID: 32791170
- Elia, I.; Haigis, M.C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab., 2021, 3(1), 21-32. doi: 10.1038/s42255-020-00317-z PMID: 33398194
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol., 2019, 30(1), 44-56. doi: 10.1093/annonc/mdy495 PMID: 30395155
- Barrueto, L.; Caminero, F.; Cash, L.; Makris, C.; Lamichhane, P.; Deshmukh, R.R. Resistance to checkpoint inhibition in cancer immunotherapy. Transl. Oncol., 2020, 13(3), 100738. doi: 10.1016/j.tranon.2019.12.010 PMID: 32114384
- Li, W.H.; Li, Y.M. Chemical strategies to boost cancer vaccines. Chem. Rev., 2020, 120(20), 11420-11478. doi: 10.1021/acs.chemrev.9b00833 PMID: 32914967
- Jiang, M.; Chen, W.; Yu, W.; Xu, Z.; Liu, X.; Jia, Q.; Guan, X.; Zhang, W. Sequentially pH-responsive drug-delivery nanosystem for tumor immunogenic cell death and cooperating with immune checkpoint blockade for efficient cancer chemoimmunotherapy. ACS Appl. Mater. Interfaces, 2021, 13(37), 43963-43974. doi: 10.1021/acsami.1c10643 PMID: 34506118
- Osinaga, E. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life, 2007, 59(4), 269-273. doi: 10.1080/15216540601188553 PMID: 17505964
- Bolhassani, A.; Zahedifard, F. Therapeutic live vaccines as a potential anticancer strategy. Int. J. Cancer, 2012, 131(8), 1733-1743. doi: 10.1002/ijc.27640 PMID: 22610886
- Junqueira, C.; Caetano, B.; Bartholomeu, D.C.; Melo, M.B.; Ropert, C.; Rodrigues, M.M.; Gazzinelli, R.T. The endless race between Trypanosoma cruzi and host immunity: Lessons for and beyond Chagas disease. Expert Rev. Mol. Med., 2010, 12, e29. doi: 10.1017/S1462399410001560 PMID: 20840799
- Wolska, K.; Gorska, A.; Antosik, K.; Lugowska, K. Immunomodulatory effects of propolis and its components on basic immune cell functions. Indian J. Pharm. Sci., 2019, 81(4), 575-588.
- Campo, V.L.; Riul, T.B.; Carvalho, I.; Baruffi, M.D. Antibodies against mucin-based glycopeptides affect Trypanosoma cruzi cell invasion and tumor cell viability. ChemBioChem, 2014, 15(10), 1495-1507. doi: 10.1002/cbic.201400069 PMID: 24920542
- Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and racial disparity in breast cancer. Adv. Exp. Med. Biol., 2019, 1152, 31-49. doi: 10.1007/978-3-030-20301-6_3 PMID: 31456178
- Yang, R.; Li, Y.; Wang, H.; Qin, T.; Yin, X.; Ma, X. Therapeutic progress and challenges for triple negative breast cancer: Targeted therapy and immunotherapy. Mol. Biomed., 2022, 3(1), 8. doi: 10.1186/s43556-022-00071-6 PMID: 35243562
- Kuroda, H.; Jamiyan, T.; Yamaguchi, R.; Kakumoto, A.; Abe, A.; Harada, O.; Masunaga, A. Tumor microenvironment in triple-negative breast cancer: The correlation of tumor-associated macrophages and tumor-infiltrating lymphocytes. Clin. Transl. Oncol., 2021, 23(12), 2513-2525. doi: 10.1007/s12094-021-02652-3 PMID: 34089486
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61. doi: 10.1186/s13058-020-01296-5 PMID: 32517735
- Lau, K.H.; Tan, A.M.; Shi, Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2288. doi: 10.3390/ijms23042288 PMID: 35216405
- Azevedo, S.A.C.; Cristina de Oliveira, R.; Rodrigues, C.C.; Teixeira, S.C.; Borges, B.C.; Vieira da Silva, C. Trypanosoma cruzi infection induces proliferation and impairs migration of a human breast cancer cell line. Exp. Parasitol., 2023, 245, 108443. doi: 10.1016/j.exppara.2022.108443 PMID: 36526003
- Crouse, J.; Xu, H.C.; Lang, P.A.; Oxenius, A. NK cells regulating T cell responses: Mechanisms and outcome. Trends Immunol., 2015, 36(1), 49-58. doi: 10.1016/j.it.2014.11.001 PMID: 25432489
- Jiang, W.; Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif., 2020, 53(1), e12712. doi: 10.1111/cpr.12712 PMID: 31730279
- Burke, J.D.; Young, H.A. IFN-γ: A cytokine at the right time, is in the right place. Semin. Immunol., 2019, 43, 101280. doi: 10.1016/j.smim.2019.05.002 PMID: 31221552
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ: in tumor progression and regression: A review. Biomark. Res., 2020, 8(1), 49. doi: 10.1186/s40364-020-00228-x PMID: 33005420
- Lin, Y.; Qi, X.; Liu, H.; Xue, K.; Xu, S.; Tian, Z. The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell Int., 2020, 20(1), 154. doi: 10.1186/s12935-020-01233-8 PMID: 32410882
- Afolabi, L.O.; Bi, J.; Chen, L.; Wan, X. A natural product, Piperlongumine (PL), increases tumor cells sensitivity to NK cell killing. Int. Immunopharmacol., 2021, 96, 107658. doi: 10.1016/j.intimp.2021.107658 PMID: 33887610
- Ehteshamfar, S.M.; Akhbari, M.; Afshari, J.T.; Seyedi, M.; Nikfar, B.; Shapouri-Moghaddam, A.; Ghanbarzadeh, E.; Momtazi-Borojeni, A.A. Anti‐inflammatory and immune‐modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J. Cell. Mol. Med., 2020, 24(23), 13573-13588. doi: 10.1111/jcmm.16049 PMID: 33135395
- Ullrich, K.A.M.; Schulze, L.L.; Paap, E.M.; Müller, T.M.; Neurath, M.F.; Zundler, S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI J., 2020, 19, 1563-1589. PMID: 33408595
- Huang, C.; Bi, J. Expression regulation and function of T-Bet in NK cells. Front. Immunol., 2021, 12, 761920. doi: 10.3389/fimmu.2021.761920 PMID: 34675939
- Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much more than IL-17A: cytokines of the IL-17 family between microbiota and cancer. Front. Immunol., 2020, 11, 565470. doi: 10.3389/fimmu.2020.565470 PMID: 33244315
- Ruiz de Morales, J.M.G.; Puig, L.; Daudén, E.; Cañete, J.D.; Pablos, J.L.; Martín, A.O.; Juanatey, C.G.; Adán, A.; Montalbán, X.; Borruel, N.; Ortí, G.; Holgado-Martín, E.; García-Vidal, C.; Vizcaya-Morales, C.; Martín-Vázquez, V.; González-Gay, M.Á. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun. Rev., 2020, 19(1), 102429. doi: 10.1016/j.autrev.2019.102429 PMID: 31734402
- Amezcua Vesely, M.C.; Rodríguez, C.; Gruppi, A.; Acosta, R.E.V. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5), 165706. doi: 10.1016/j.bbadis.2020.165706 PMID: 31987839
- Chung, S.H.; Ye, X.Q.; Iwakura, Y. Interleukin-17 family members in health and disease. Int. Immunol., 2021, 33(12), 723-729. doi: 10.1093/intimm/dxab075 PMID: 34611705
- Wu, S.Y.; Fu, T.; Jiang, Y.Z.; Shao, Z.M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120. doi: 10.1186/s12943-020-01238-x PMID: 32762681
- Farhood, B.; Najafi, M.; Mortezaee, K. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol., 2019, 234(6), 8509-8521. doi: 10.1002/jcp.27782 PMID: 30520029
- Huntington, N.D.; Cursons, J.; Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer, 2020, 20(8), 437-454. doi: 10.1038/s41568-020-0272-z PMID: 32581320
- Tay, R.E.; Richardson, E.K.; Toh, H.C. Revisiting the role of CD4+ T cells in cancer immunotherapynew insights into old paradigms. Cancer Gene Ther., 2021, 28(1-2), 5-17. doi: 10.1038/s41417-020-0183-x PMID: 32457487
- Patel, C.H.; Leone, R.D.; Horton, M.R.; Powell, J.D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov., 2019, 18(9), 669-688. doi: 10.1038/s41573-019-0032-5 PMID: 31363227
- Schuijs, M.J.; Hammad, H.; Lambrecht, B.N. Professional and 'amateur'antigen-presenting cells in type 2 immunity. Trends Immunol., 2019, 40(1), 22-34. doi: 10.1016/j.it.2018.11.001 PMID: 30502024
- Zhu, X.; Zhu, J. CD4 T helper cell subsets and related human immunological disorders. Int. J. Mol. Sci., 2020, 21(21), 8011. doi: 10.3390/ijms21218011 PMID: 33126494
- Richardson, J.R.; Schöllhorn, A.; Gouttefangeas, C.; Schuhmacher, J. CD4+ T cells: Multitasking cells in the duty of cancer immunotherapy. Cancers, 2021, 13(4), 596. doi: 10.3390/cancers13040596 PMID: 33546283
- Lo Nigro, C.; Macagno, M.; Sangiolo, D.; Bertolaccini, L.; Aglietta, M.; Merlano, M.C. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: Biological evidence and clinical perspectives. Ann. Transl. Med., 2019, 7(5), 105. doi: 10.21037/atm.2019.01.42 PMID: 31019955
- Roumenina, L.T.; Daugan, M.V.; Petitprez, F.; Sautès-Fridman, C.; Fridman, W.H. Context-dependent roles of complement in cancer. Nat. Rev. Cancer, 2019, 19(12), 698-715. doi: 10.1038/s41568-019-0210-0 PMID: 31666715
- Ramírez-Toloza, G.; Aguilar-Guzmán, L.; Valck, C.; Ferreira, V.P.; Ferreira, A. The interactions of parasite calreticulin with initial complement components: Consequences in immunity and virulence. Front. Immunol., 2020, 11, 1561. doi: 10.3389/fimmu.2020.01561 PMID: 32793217
- Sosoniuk-Roche, E.; Cruz, P.; Maldonado, I.; Duaso, L.; Pesce, B.; Michalak, M.; Valck, C.; Ferreira, A. In vitro treatment of a murine mammary adenocarcinoma cell line with recombinant Trypanosoma cruzi calreticulin promotes immunogenicity and phagocytosis. Mol. Immunol., 2020, 124, 51-60. doi: 10.1016/j.molimm.2020.05.013 PMID: 32526557
- Huang, Y.; Hui, K.; Jin, M.; Yin, S.; Wang, W.; Ren, Q. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis). Sci. Rep., 2016, 6(1), 27578. doi: 10.1038/srep27578 PMID: 27279413
- Wang, W.A.; Groenendyk, J.; Michalak, M. Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol., 2012, 44(6), 842-846. doi: 10.1016/j.biocel.2012.02.009 PMID: 22373697
- Wiseman, R.L.; Mesgarzadeh, J.S.; Hendershot, L.M. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol. Cell, 2022, 82(8), 1477-1491. doi: 10.1016/j.molcel.2022.03.025 PMID: 35452616
- Kielbik, M.; Szulc-Kielbik, I.; Klink, M. CalreticulinMultifunctional chaperone in immunogenic cell death: Potential significance as a prognostic biomarker in ovarian cancer patients. Cells, 2021, 10(1), 130. doi: 10.3390/cells10010130 PMID: 33440842
- Pandya, U.M.; Manzanares, M.A.; Tellechea, A.; Egbuta, C.; Daubriac, J.; Jimenez-Jaramillo, C.; Samra, F.; Fredston-Hermann, A.; Saadipour, K.; Gold, L.I. Calreticulin exploits TGF‐β for extracellular matrix induction engineering a tissue regenerative process. FASEB J., 2020, 34(12), 15849-15874. doi: 10.1096/fj.202001161R PMID: 33015849
- Kotian, V.; Sarmah, D.; Kaur, H.; Kesharwani, R.; Verma, G.; Mounica, L.; Veeresh, P.; Kalia, K.; Borah, A.; Wang, X.; Dave, K.R.; Yavagal, D.R.; Bhattacharya, P. Evolving evidence of calreticulin as a pharmacological target in neurological disorders. ACS Chem. Neurosci., 2019, 10(6), 2629-2646. doi: 10.1021/acschemneuro.9b00158 PMID: 31017385
- Schcolnik-Cabrera, A.; Oldak, B.; Juárez, M.; Cruz-Rivera, M.; Flisser, A.; Mendlovic, F. Calreticulin in phagocytosis and cancer: Opposite roles in immune response outcomes. Apoptosis, 2019, 24(3-4), 245-255. doi: 10.1007/s10495-019-01532-0 PMID: 30929105
- Labriola, C.A.; Giraldo, A.M.V.; Parodi, A.J.; Caramelo, J.J. Functional cooperation between BiP and calreticulin in the folding maturation of a glycoprotein in Trypanosoma cruzi. Mol. Biochem. Parasitol., 2011, 175(2), 112-117. doi: 10.1016/j.molbiopara.2010.10.002 PMID: 20934456
- Labriola, C.A.; Conte, I.L.; López Medus, M.; Parodi, A.J.; Caramelo, J.J. Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol. PLoS One, 2010, 5(10), e13141. doi: 10.1371/journal.pone.0013141 PMID: 20957192
- Ramírez, G.; Valck, C.; Ferreira, V.P.; López, N.; Ferreira, A. Extracellular Trypanosoma cruzi calreticulin in the hostparasite interplay. Trends Parasitol., 2011, 27(3), 115-122. doi: 10.1016/j.pt.2010.12.007 PMID: 21288773
- Reyes, A.C.; Encina, J.L.R. Trypanosoma cruzi infection: Mechanisms of evasion of immune response. Biol. Trypanosoma. cruzi., 2019, 11, 153-173.
- Ramírez-Toloza, G.; Abello, P.; Ferreira, A. Is the antitumor property of Trypanosoma cruzi infection mediated by its calreticulin? Front. Immunol., 2016, 7, 268. doi: 10.3389/fimmu.2016.00268 PMID: 27462315
- Ramírez, G.; Valck, C.; Aguilar, L.; Kemmerling, U.; López-Muñoz, R.; Cabrera, G.; Morello, A.; Ferreira, J.; Maya, J.D.; Galanti, N.; Ferreira, A. Roles of Trypanosoma cruzi calreticulin in parasitehost interactions and in tumor growth. Mol. Immunol., 2012, 52(3-4), 133-140. doi: 10.1016/j.molimm.2012.05.006 PMID: 22673211
- Ferreira, V.; Valck, C.; Sánchez, G.; Gingras, A.; Tzima, S.; Molina, M.C.; Sim, R.; Schwaeble, W.; Ferreira, A. The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi. J. Immunol., 2004, 172(5), 3042-3050. doi: 10.4049/jimmunol.172.5.3042 PMID: 14978109
- Venkateswaran, K.; Verma, A.; Bhatt, A.N.; Shrivastava, A.; Manda, K.; Raj, H.G.; Prasad, A.; Len, C.; Parmar, V.S.; Dwarakanath, B.S. Emerging roles of calreticulin in cancer: Implications for therapy. Curr. Protein Pept. Sci., 2018, 19(4), 344-357. doi: 10.2174/1389203718666170111123253 PMID: 28079009
- Sánchez, D.; Palová-Jelínková, L.; Felsberg, J.; imová, M.; Pekáriková, A.; Pecharová, B.; Swoboda, I.; Mothes, T.; Mulder, C.J.J.; Bene, Z.; Tlaskalová-Hogenová, H. Tučková, L. Anti-calreticulin immunoglobulin A (IgA) antibodies in refractory coeliac disease. Clin. Exp. Immunol., 2008, 153(3), 351-359. doi: 10.1111/j.1365-2249.2008.03701.x PMID: 18637103
- Abello-Cáceres, P.; Pizarro-Bauerle, J.; Rosas, C.; Maldonado, I.; Aguilar-Guzmán, L.; González, C.; Ramírez, G.; Ferreira, J.; Ferreira, A. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection? BMC Cancer, 2016, 16(1), 731. doi: 10.1186/s12885-016-2764-5 PMID: 27619675
- Ramírez-Toloza, G.; Ferreira, A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: The specific roles of host/parasite molecules and Trypanosoma cruzi calreticulin. Front. Microbiol., 2017, 8, 1667. doi: 10.3389/fmicb.2017.01667 PMID: 28919885
- López, N.C.; Valck, C.; Ramírez, G.; Rodríguez, M.; Ribeiro, C.; Orellana, J.; Maldonado, I.; Albini, A.; Anacona, D.; Lemus, D.; Aguilar, L.; Schwaeble, W.; Ferreira, A. Antiangiogenic and antitumor effects of Trypanosoma cruzi Calreticulin. PLoS Negl. Trop. Dis., 2010, 4(7), e730. doi: 10.1371/journal.pntd.0000730 PMID: 20625551
- Ramírez-Toloza, G.; Aguilar-Guzmán, L.; Valck, C.; Abello, P.; Ferreira, A. Is it all that bad when living with an intracellular protozoan? The role of Trypanosoma cruzi calreticulin in angiogenesis and tumor growth. Front. Oncol., 2015, 4, 382. doi: 10.3389/fonc.2014.00382 PMID: 25629005
- Borges, B.C.; Uehara, I.A.; Dias, L.O.S.; Brígido, P.C.; da Silva, C.V.; Silva, M.J.B. Mechanisms of infectivity and evasion derived from microvesicles cargo produced by Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2016, 6, 161. doi: 10.3389/fcimb.2016.00161 PMID: 27921011
- Ferri, G.; Edreira, M.M. All roads lead to cytosol: Trypanosoma cruzi multi-strategic approach to invasion. Front. Cell. Infect. Microbiol., 2021, 11, 634793. doi: 10.3389/fcimb.2021.634793 PMID: 33747982
- Umarao, P.; Rath, P.P.; Gourinath, S. Cdc42/Rac Interactive binding containing effector proteins in unicellular protozoans with reference to human host: Locks of the Rho signaling. Front. Genet., 2022, 13, 781885. doi: 10.3389/fgene.2022.781885 PMID: 35186026
- Martins, F.A.; dos Santos, M.A.; Santos, J.G.; da Silva, A.A.; Borges, B.C.; da Costa, M.S.; Tavares, P.C.B.; Teixeira, S.C.; Brígido, R.T.S.; Teixeira, T.L.; Rodrigues, C.C.; Silva, N.S.L.; de Oliveira, R.C.; de Faria, L.C.; Lemes, M.R.; Zanon, R.G.; Tomiosso, T.C.; Machado, J.R.; da Silva, M.V.; Oliveira, C.J.F.; da Silva, C.V. The recombinant form of Trypanosoma cruzi P21 controls infection by modulating host immune response. Front. Immunol., 2020, 11, 1010. doi: 10.3389/fimmu.2020.01010 PMID: 32655546
- Barbosa, J.S.; Moura, F.B.R.; Ferreira, B.A.; Martins, F.A.; Muniz, E.H.; Gomide, J.A.L.; Silva, C.V.; Ribeiro, D.L.; Araújo, F.A.; Tomiosso, T.C. Recombinant protein rP21 from Trypanosoma cruzi has effect on inflammation, angiogenesis and fibrogenesis in skin wound model C57BL/6 Mouse. Adv. Res., 2021, 22, 28-37. doi: 10.9734/air/2021/v22i130285
- Khare, T.; Bissonnette, M.; Khare, S. CXCL12-CXCR4/CXCR7 axis in colorectal cancer: Therapeutic target in preclinical and clinical studies. Int. J. Mol. Sci., 2021, 22(14), 7371. doi: 10.3390/ijms22147371 PMID: 34298991
- Shi, Y.; Riese, D.J., II; Shen, J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front. Pharmacol., 2020, 11, 574667. doi: 10.3389/fphar.2020.574667 PMID: 33363463
- Bianchi, M.E.; Mezzapelle, R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front. Immunol., 2020, 11, 2109. doi: 10.3389/fimmu.2020.02109 PMID: 32983169
- Daniel, S.K.; Seo, Y.D.; Pillarisetty, V.G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol., 2020, 65, 176-188. doi: 10.1016/j.semcancer.2019.12.007 PMID: 31874281
- Cohen-Solal, K.A.; Boregowda, R.K.; Lasfar, A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol. Cancer, 2015, 14(1), 137. doi: 10.1186/s12943-015-0404-3 PMID: 26204939
- Teixeira, S.C.; Lopes, D.S.; Gimenes, S.N.C.; Teixeira, T.L.; da Silva, M.S.; Brígido, R.T.S.; da Luz, F.A.C.; da Silva, A.A.; Silva, M.A.; Florentino, P.V.; Tavares, P.C.B.; dos Santos, M.A.; Ávila, V.M.R.; Silva, M.J.B.; Elias, M.C.; Mortara, R.A.; da Silva, C.V. Mechanistic insights into the anti-angiogenic activity of Trypanosoma cruzi protein 21 and its potential impact on the onset of chagasic cardiomyopathy. Sci. Rep., 2017, 7(1), 44978. doi: 10.1038/srep44978 PMID: 28322302
- Teixeira, T.L.; Castilhos, P.; Rodrigues, C.C.; da Silva, A.A.; Brígido, R.T.S.; Teixeira, S.C.; Borges, B.C.; Dos Santos, M.A.; Martins, F.A.; Santos, P.C.F.; Servato, J.P.S.; Silva, M.S.; da Silva, M.J.B.; Elias, M.C.; da Silva, C.V. Experimental evidences that P21 protein controls Trypanosoma cruzi replication and modulates the pathogenesis of infection. Microb. Pathog., 2019, 135, 103618. doi: 10.1016/j.micpath.2019.103618 PMID: 31310832
- Teixeira, T.L.; Machado, F.C.; Alves da Silva, A.; Teixeira, S.C.; Borges, B.C.; dos Santos, M.A.; Martins, F.A.; Brígido, P.C.; Rodrigues, A.A.; Notário, A.F.O.; Ferreira, B.A.; Servato, J.P.S.; Deconte, S.R.; Lopes, D.S.; Ávila, V.M.R.; Araújo, F.A.; Tomiosso, T.C.; Silva, M.J.B.; da Silva, C.V. Trypanosoma cruzi P21: A potential novel target for chagasic cardiomyopathy therapy. Sci. Rep., 2015, 5(1), 16877. doi: 10.1038/srep16877 PMID: 26574156
- Wu, A.A.; Drake, V.; Huang, H.S.; Chiu, S.; Zheng, L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. OncoImmunology, 2015, 4(7), e1016700. doi: 10.1080/2162402X.2015.1016700 PMID: 26140242
- Groux-Degroote, S.; Cavdarli, S.; Uchimura, K.; Allain, F.; Delannoy, P. Glycosylation changes in inflammatory diseases. Adv. Protein Chem. Struct. Biol., 2020, 119, 111-156. doi: 10.1016/bs.apcsb.2019.08.008 PMID: 31997767
- Peixoto, A.; Relvas-Santos, M.; Azevedo, R.; Santos, L.L.; Ferreira, J.A. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front. Oncol., 2019, 9, 380. doi: 10.3389/fonc.2019.00380 PMID: 31157165
- Kasprzak, A.; Adamek, A. Mucins: The old, the new and the promising factors in hepatobiliary carcinogenesis. Int. J. Mol. Sci., 2019, 20(6), 1288. doi: 10.3390/ijms20061288 PMID: 30875782
- Berois, N.; Pittini, A.; Osinaga, E. Targeting tumor glycans for cancer therapy: Successes, limitations, and perspectives. Cancers, 2022, 14(3), 645. doi: 10.3390/cancers14030645 PMID: 35158915
- Jin, K.T.; Lan, H.R.; Chen, X.Y.; Wang, S.B.; Ying, X.J.; Lin, Y.; Mou, X.Z. Recent advances in carbohydrate-based cancer vaccines. Biotechnol. Lett., 2019, 41(6-7), 641-650. doi: 10.1007/s10529-019-02675-5 PMID: 30993481
- Mantovani, A.; Romero, P.; Palucka, A.K.; Marincola, F.M. Tumour immunity: Effector response to tumour and role of the microenvironment. Lancet, 2008, 371(9614), 771-783. doi: 10.1016/S0140-6736(08)60241-X PMID: 18275997
- Giorgi, M.E.; Lederkremer, R.M. The glycan structure of T. cruzi mucins depends on the host. Insights on the chameleonic galactose. Molecules, 2020, 25(17), 3913. doi: 10.3390/molecules25173913 PMID: 32867240
- Martins-Teixeira, M.B. Campo, V.L.; Biondo, M.; Sesti-Costa, R.; Carneiro, Z.A.; Silva, J.S.; Carvalho, I. α-Selective glycosylation affords mucin-related GalNAc amino acids and diketopiperazines active on Trypanosoma cruzi. Bioorg. Med. Chem., 2013, 21(7), 1978-1987. doi: 10.1016/j.bmc.2013.01.027 PMID: 23415086
- Leiria, C. V.; Braga Martins-Teixeira, M.; Carvalho, I. Trypanosoma cruzi invasion into host cells: A complex molecular targets interplay. Mini Rev. Med. Chem., 2016, 16(13), 1084-1097. doi: 10.2174/1389557516666160607230238 PMID: 27281167
- Nath, S.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med., 2014, 20(6), 332-342. doi: 10.1016/j.molmed.2014.02.007 PMID: 24667139
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol., 2018, 54(2), 407-419. doi: 10.3892/ijo.2018.4661 PMID: 30570109
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314. doi: 10.1016/j.bbcan.2019.188314 PMID: 31682895
- Duan, X.; Chan, C.; Lin, W. Nanoparticle‐mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed., 2019, 58(3), 670-680. doi: 10.1002/anie.201804882 PMID: 30016571
- Raza, F.; Zafar, H.; Zhang, S.; Kamal, Z.; Su, J.; Yuan, W.E.; Mingfeng, Q. Recent advances in cell membrane‐derived biomimetic nanotechnology for cancer immunotherapy. Adv. Healthc. Mater., 2021, 10(6), 2002081. doi: 10.1002/adhm.202002081 PMID: 33586322
- Aikins, M.E.; Xu, C.; Moon, J.J. Engineered nanoparticles for cancer vaccination and immunotherapy. Acc. Chem. Res., 2020, 53(10), 2094-2105. doi: 10.1021/acs.accounts.0c00456 PMID: 33017150
- Zaheer, T.; Pal, K.; Zaheer, I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem., 2021, 100, 237-244. doi: 10.1016/j.procbio.2020.09.028 PMID: 33013180
- Zhao, Y.; Baldin, A.V.; Isayev, O.; Werner, J.; Zamyatnin, A.A., Jr; Bazhin, A.V. Cancer vaccines: Antigen selection strategy. Vaccines, 2021, 9(2), 85. doi: 10.3390/vaccines9020085 PMID: 33503926
- Lantier, L.; Poupée-Beaugé, A.; di Tommaso, A.; Ducournau, C.; Epardaud, M.; Lakhrif, Z.; Germon, S.; Debierre-Grockiego, F.; Mévélec, M.N.; Battistoni, A.; Coënon, L.; Deluce-Kakwata-Nkor, N.; Velge-Roussel, F.; Beauvillain, C.; Baranek, T.; Lee, G.S.; Kervarrec, T.; Touzé, A.; Moiré, N.; Dimier-Poisson, I. Neospora caninum: a new class of biopharmaceuticals in the therapeutic arsenal against cancer. J. Immunother. Cancer, 2020, 8(2), e001242. doi: 10.1136/jitc-2020-001242 PMID: 33257408
- Pereira, I.R.; Vilar-Pereira, G.; Marques, V.; da Silva, A.A.; Caetano, B.; Moreira, O.C.; Machado, A.V.; Bruna-Romero, O.; Rodrigues, M.M.; Gazzinelli, R.T.; Lannes-Vieira, J. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog., 2015, 11(1), e1004594. doi: 10.1371/journal.ppat.1004594 PMID: 25617628
- Aguilar-Guzmán, L.; Lobos-González, L.; Rosas, C.; Vallejos, G.; Falcón, C.; Sosoniuk, E.; Coddou, F.; Leyton, L.; Lemus, D.; Quest, A.F.G.; Ferreira, A. Human survivin and Trypanosoma cruzi calreticulin act in synergy against a murine melanoma in vivo. PLoS One, 2014, 9(4), e95457. doi: 10.1371/journal.pone.0095457 PMID: 24755644
Supplementary files
