Molecular Mechanisms of Chloroquine and Hydroxychloroquine Used in Cancer Therapy

  • Авторлар: De Sanctis J.1, Charris J.2, Blanco Z.3, Ramírez H.4, Martínez G.5, Mijares M.6
  • Мекемелер:
    1. Faculty of Medicine and Dentistry,, Institute of Molecular and Translational Medicine
    2. Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela
    3. Organic Synthesis Laboratory, Faculty of Pharmacy,, Central University of Venezuela
    4. Faculty of Health Sciences and Human Development, Research Directorate,, Center for Sustainable Development Studies, ECOTEC University
    5. Faculty of Medicine, Institute of Immunology,, Central University of Venezuela
    6. Faculty of Medicine, Institute of Immunology,, , Central University of Venezuela,
  • Шығарылым: Том 23, № 10 (2023)
  • Беттер: 1122-1144
  • Бөлім: Oncology
  • URL: https://hum-ecol.ru/1871-5206/article/view/694283
  • DOI: https://doi.org/10.2174/1871520622666220519102948
  • ID: 694283

Дәйексөз келтіру

Толық мәтін

Аннотация

Tumour relapse, chemotherapy resistance, and metastasis continue to be unsolved issues in cancer therapy. A recent approach has been to scrutinise drugs used in the clinic for other illnesses and modify their structure to increase selectivity to cancer cells. Chloroquine (CQ) and hydroxychloroquine (HCQ), known antimalarials, have successfully treated autoimmune and neoplastic diseases. CQ and HCQ, well-known lysosomotropic agents, induce apoptosis, downregulate autophagy, and modify the tumour microenvironment. Moreover, they affect the Toll 9/NF-κB receptor pathway, activate stress response pathways, enhance p53 activity and CXCR4-CXCL12 expression in cancer cells, which would help explain their effects in cancer treatment. These compounds can normalise the tumourassociated vasculature, promote the activation of the immune system, change the phenotype of tumour-associated macrophages (from M2 to M1), and stimulate cancer-associated fibroblasts. We aim to review the historical aspects of CQ and its derivatives and the most relevant mechanisms that support the therapeutic use of CQ and HCQ for the treatment of cancer.

Авторлар туралы

Juan De Sanctis

Faculty of Medicine and Dentistry,, Institute of Molecular and Translational Medicine

Email: info@benthamscience.net

Jaime Charris

Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela

Email: info@benthamscience.net

Zuleyma Blanco

Organic Synthesis Laboratory, Faculty of Pharmacy,, Central University of Venezuela

Email: info@benthamscience.net

Hegira Ramírez

Faculty of Health Sciences and Human Development, Research Directorate,, Center for Sustainable Development Studies, ECOTEC University

Email: info@benthamscience.net

Gricelis Martínez

Faculty of Medicine, Institute of Immunology,, Central University of Venezuela

Email: info@benthamscience.net

Michael Mijares

Faculty of Medicine, Institute of Immunology,, , Central University of Venezuela,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030. doi: 10.1002/cncr.33587 PMID: 34086348
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Rallis, K.S.; Lai Yau, T.H.; Sideris, M. Chemoradiotherapy in cancer treatment: Rationale and clinical applications. Anticancer Res., 2021, 41(1), 1-7. doi: 10.21873/anticanres.14746 PMID: 33419794
  4. Chen, W.; Yuan, Y.; Jiang, X. Antibody and antibody fragments for cancer immunotherapy. J. Control. Release, 2020, 328, 395-406. doi: 10.1016/j.jconrel.2020.08.021 PMID: 32853733
  5. Tsao, L.C.; Force, J.; Hartman, Z.C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res., 2021, 81(18), 4641-4651. doi: 10.1158/0008-5472.CAN-21-1109 PMID: 34145037
  6. Hayes, C. Cellular immunotherapies for cancer. Ir. J. Med. Sci., 2021, 190(1), 41-57. doi: 10.1007/s11845-020-02264-w PMID: 32607912
  7. Liu, J.; Pandya, P.; Afshar, S. Therapeutic advances in oncology. Int. J. Mol. Sci., 2021, 22(4), 2008. doi: 10.3390/ijms22042008 PMID: 33670524
  8. Dembic, Z. Antitumor drugs and their targets. Molecules, 2020, 25(23), 5776. doi: 10.3390/molecules25235776 PMID: 33297561
  9. Blidner, A.G.; Choi, J.; Cooksley, T.; Dougan, M.; Glezerman, I.; Ginex, P.; Girotra, M.; Gupta, D.; Johnson, D.; Shannon, V.R.; Suarez-Almazor, M.; Rapoport, B.L.; Anderson, R. Cancer immunotherapy-related adverse events: Causes and challenges. Support. Care Cancer, 2020, 28(12), 6111-6117. doi: 10.1007/s00520-020-05705-5 PMID: 32857220
  10. Fortes, B.H.; Tailor, P.D.; Dalvin, L.A. Ocular toxicity of targeted anticancer agents. Drugs, 2021, 81(7), 771-823. doi: 10.1007/s40265-021-01507-z PMID: 33788182
  11. Kamat, S.; Kumari, M. Repurposing chloroquine against multiple diseases with special attention to SARS-CoV-2 and associated toxicity. Front. Pharmacol., 2021, 12, 576093. doi: 10.3389/fphar.2021.576093 PMID: 33912030
  12. Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology-patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742. doi: 10.1038/nrclinonc.2015.169 PMID: 26483297
  13. Armando, R.G.; Mengual Gómez, D.L.; Gomez, D.E. New drugs are not enough drug repositioning in oncology: An update. Int. J. Oncol., 2020, 56(3), 651-684. doi: 10.3892/ijo.2020.4966 PMID: 32124955
  14. Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442. doi: 10.3332/ecancer.2014.485 PMID: 25075216
  15. Plantone, D.; Koudriavtseva, T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin. Drug Investig., 2018, 38(8), 653-671. doi: 10.1007/s40261-018-0656-y PMID: 29737455
  16. Pantziarka, P. Scientific advice - is drug repurposing missing a trick? Nat. Rev. Clin. Oncol., 2017, 14(8), 455-456. doi: 10.1038/nrclinonc.2017.69 PMID: 28534529
  17. Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, N.; Anaissie, E.; Wilson, C.; Dhodapkar, M.; Zeddis, J.; Barlogie, B. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med., 1999, 341(21), 1565-1571. doi: 10.1056/NEJM199911183412102 PMID: 10564685
  18. DeBusk, R.F.; Pepine, C.J.; Glasser, D.B.; Shpilsky, A.; DeRiesthal, H.; Sweeney, M. Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease. Am. J. Cardiol., 2004, 93(2), 147-153. doi: 10.1016/j.amjcard.2003.09.030 PMID: 14715338
  19. Al-Bari, M.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621. doi: 10.1093/jac/dkv018 PMID: 25693996
  20. Martínez, G.P.; Zabaleta, M.E.; Di Giulio, C.; Charris, J.E.; Mijares, M.R. The role of chloroquine and hydroxychloroquine in immune regulation and diseases. Curr. Pharm. Des., 2020, 26(35), 4467-4485. doi: 10.2174/1381612826666200707132920 PMID: 32634079
  21. Huang, H.; He, Q.; Guo, B.; Xu, X.; Wu, Y.; Li, X. Progress in redirecting antiparasitic drugs for cancer treatment. Drug Des. Devel. Ther., 2021, 15, 2747-2767. doi: 10.2147/DDDT.S308973 PMID: 34188451
  22. Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.B.; Charris, J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem., 2018, 26(4), 815-823. doi: 10.1016/j.bmc.2017.12.022 PMID: 29398445
  23. Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today, 2020, 25(11), 2012-2022. doi: 10.1016/j.drudis.2020.09.010 PMID: 32947043
  24. Coban, C. The host targeting effect of chloroquine in malaria. Curr. Opin. Immunol., 2020, 66, 98-107. doi: 10.1016/j.coi.2020.07.005 PMID: 32823144
  25. Li, Y.Q.; Zheng, Z.; Liu, Q.X.; Lu, X.; Zhou, D.; Zhang, J.; Zheng, H.; Dai, J.G. Repositioning of antiparasitic drugs for tumor treatment. Front. Oncol., 2021, 11, 670804. doi: 10.3389/fonc.2021.670804 PMID: 33996598
  26. Compter, I.; Eekers, D.B.P.; Hoeben, A.; Rouschop, K.M.A.; Reymen, B.; Ackermans, L.; Beckervordersantforth, J.; Bauer, N.J.C.; Anten, M.M.; Wesseling, P.; Postma, A.A.; De Ruysscher, D.; Lambin, P. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: A phase IB trial. Autophagy, 2021, 17(9), 2604-2612. doi: 10.1080/15548627.2020.1816343 PMID: 32866424
  27. Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables. Front. Oncol., 2018, 8, 335. doi: 10.3389/fonc.2018.00335 PMID: 30211116
  28. Wallace, D.J. Antimalarials-The 'real' advance in lupus. Lupus, 2001, 10(6), 385-387. doi: 10.1191/096120301678646092 PMID: 11434570
  29. Krafts, K.; Hempelmann, E.; Skórska-Stania, A. From methylene blue to chloroquine: A brief review of the development of an antimalarial therapy. Parasitol. Res., 2012, 111(1), 1-6. doi: 10.1007/s00436-012-2886-x PMID: 22411634
  30. Black, R.H.; Canfield, C.J.; Clyde, D.F.; Peters, W. _Chemotherapy of malaria_Ed., Bruce-Chwatt, L.J. rev. 2nded.; World Health Organization: Geneva, 1986.
  31. Andersag, H.; Breitner, S.; Jung, H. Quinoline compound and process of making the same. German Pat. 683 692. Chem. Abstr. 1942, 36, 4973.
  32. Coatney, G.R. Pitfalls in a discovery: The chronicle of chloroquine. Am. J. Trop. Med. Hyg., 1963, 12(2), 121-128. doi: 10.4269/ajtmh.1963.12.121 PMID: 14021822
  33. FDA approved drug products: Aralen chloroquine oral tablets. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=006002 Accessed on: 8 Mar, 2021.
  34. Chloroquine. Available from: http://www.DRUGBANK.ca/drugs/DB00608#identification
  35. Mushtaque, M. Shahjahan, Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: A review. Eur. J. Med. Chem., 2015, 90, 280-295. doi: 10.1016/j.ejmech.2014.11.022 PMID: 25461328
  36. Staines, H.; Krishna, S. Treatment and prevention of malaria: Antimalarial drug chemistry, action and use; Springer: Basel, 2012. doi: 10.1007/978-3-0346-0480-2
  37. Yayon, A.; Cabantchik, Z.I.; Ginsburg, H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc. Natl. Acad. Sci. USA, 1985, 82(9), 2784-2788. doi: 10.1073/pnas.82.9.2784 PMID: 3887411
  38. Krishna, S.; White, N.J. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin. Pharmacokinet., 1996, 30(4), 263-299. doi: 10.2165/00003088-199630040-00002 PMID: 8983859
  39. Kaschula, C.H.; Egan, T.J.; Hunter, R.; Basilico, N.; Parapini, S.; Taramelli, D.; Pasini, E.; Monti, D. Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J. Med. Chem., 2002, 45(16), 3531-3539. doi: 10.1021/jm020858u PMID: 12139464
  40. Pou, S.; Winter, R.W.; Nilsen, A.; Kelly, J.X.; Li, Y.; Doggett, J.S.; Riscoe, E.W.; Wegmann, K.W.; Hinrichs, D.J.; Riscoe, M.K. Sontochin as a guide to the development of drugs against chloroquine-resistant malaria. Antimicrob. Agents Chemother., 2012, 56(7), 3475-3480. doi: 10.1128/AAC.00100-12 PMID: 22508305
  41. Surrey, A.; Hammer, H. The preparation of 7-Chloro-4- (4-(N-ethyl-N-β-hydroxyethylamino)-1-methylbutylamino)-quinoline and related compounds. J. Am. Chem. Soc., 1950, 72(4), 1814-1815. doi: 10.1021/ja01160a116
  42. Wenzel, N.I.; Chavain, N.; Wang, Y.; Friebolin, W.; Maes, L.; Pradines, B.; Lanzer, M.; Yardley, V.; Brun, R.; Herold-Mende, C.; Biot, C.; Tóth, K.; Davioud-Charvet, E. Antimalarial versus cytotoxic properties of dual drugs derived from 4-aminoquinolines and Mannich bases: Interaction with DNA. J. Med. Chem., 2010, 53(8), 3214-3226. doi: 10.1021/jm9018383 PMID: 20329733
  43. Nordstrøm, L.U.; Sironi, J.; Aranda, E.; Maisonet, J.; Perez-Soler, R.; Wu, P.; Schwartz, E.L. Discovery of autophagy inhibitors with antiproliferative activity in lung and pancreatic cancer cells. ACS Med. Chem. Lett., 2015, 6(2), 134-139. doi: 10.1021/ml500348p PMID: 25699157
  44. Sleightholm, R.; Yang, B.; Yu, F.; Xie, Y.; Oupický, D. Chloroquine-modified hydroxyethyl starch as a polymeric drug for cancer therapy. Biomacromolecules, 2017, 18(8), 2247-2257. doi: 10.1021/acs.biomac.7b00023 PMID: 28708385
  45. De Lellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers , 2021, 13(16), 3946. doi: 10.3390/cancers13163946 PMID: 34439102
  46. Fong, W.; To, K.K.W. Repurposing chloroquine analogs as an adjuvant cancer therapy. Recent Pat. Anticancer Drug Discov., 2021, 16(2), 204-221. doi: 10.2174/1574892815666210106111012 PMID: 33413069
  47. Krajewski, W.A. Alterations in the internucleosomal DNA helical twist in chromatin of human erythroleukemia cells in vivo influences the chromatin higher-order folding. FEBS Lett., 1995, 361(2-3), 149-152. doi: 10.1016/0014-5793(95)00144-X PMID: 7698313
  48. Yin, F.; Guo, M.; Yao, S. Kinetics of DNA binding with chloroquine phosphate using capacitive sensing method. Biosens. Bioelectron., 2003, 19(4), 297-304. doi: 10.1016/S0956-5663(03)00197-0 PMID: 14615086
  49. Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; Cheng, F.; Zhou, Y.; Zhang, H.; Tang, K.; Ma, J.; Liu, Y.; Huang, B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun., 2018, 9(1), 873. doi: 10.1038/s41467-018-03225-9 PMID: 29491374
  50. Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781. doi: 10.3332/ecancer.2017.781 PMID: 29225688
  51. Grønningsæter, I.S.; Reikvam, H.; Aasebø, E.; Bartaula-Brevik, S.; Hernandez-Valladares, M.; Selheim, F.; Berven, F.S.; Tvedt, T.H.; Bruserud, Ø.; Hatfield, K.J. Effects of the autophagy-inhibiting agent chloroquine on acute myeloid leukemia cells; Characterization of patient heterogeneity. J. Pers. Med., 2021, 11(8), 779. doi: 10.3390/jpm11080779 PMID: 34442423
  52. Anand, K.; Niravath, P.; Patel, T.; Ensor, J.; Rodriguez, A.; Boone, T.; Wong, S.T.; Chang, J.C. A phase II study of the efficacy and safety of chloroquine in combination with taxanes in the treatment of patients with advanced or metastatic anthracycline-refractory breast cancer. Clin. Breast Cancer, 2021, 21(3), 199-204. doi: 10.1016/j.clbc.2020.09.015 PMID: 34159901
  53. Briceño, E.; Reyes, S.; Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus, 2003, 14(2), e3. doi: 10.3171/foc.2003.14.2.4 PMID: 15727424
  54. Arnaout, A.; Robertson, S.J.; Pond, G.R.; Lee, H.; Jeong, A.; Ianni, L.; Kroeger, L.; Hilton, J.; Coupland, S.; Gottlieb, C.; Hurley, B.; McCarthy, A.; Clemons, M. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res. Treat., 2019, 178(2), 327-335. doi: 10.1007/s10549-019-05381-y PMID: 31392517
  55. Molenaar, R.J.; Coelen, R.J.S.; Khurshed, M.; Roos, E.; Caan, M.W.A.; van Linde, M.E.; Kouwenhoven, M.; Bramer, J.A.M.; Bovée, J.V.M.G.; Mathôt, R.A.; Klümpen, H.J.; van Laarhoven, H.W.M.; van Noorden, C.J.F.; Vandertop, W.P.; Gelderblom, H.; van Gulik, T.M.; Wilmink, J.W. Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours. BMJ Open, 2017, 7(6), e014961. doi: 10.1136/bmjopen-2016-014961 PMID: 28601826
  56. Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343. doi: 10.7326/0003-4819-144-5-200603070-00008 PMID: 16520474
  57. Rojas-Puentes, L.L.; Gonzalez-Pinedo, M.; Crismatt, A.; Ortega-Gomez, A.; Gamboa-Vignolle, C.; Nuñez-Gomez, R.; Dorantes-Gallareta, Y.; Arce-Salinas, C.; Arrieta, O. Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat. Oncol., 2013, 8(1), 209. doi: 10.1186/1748-717X-8-209 PMID: 24010771
  58. Samaras, P.; Tusup, M.; Nguyen-Kim, T.D.L.; Seifert, B.; Bachmann, H.; von Moos, R.; Knuth, A.; Pascolo, S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol., 2017, 80(5), 1005-1012. doi: 10.1007/s00280-017-3446-y PMID: 28980060
  59. Mehnert, J.M.; Kaveney, A.D.; Malhotra, J.; Spencer, K.; Portal, D.; Goodin, S.; Tan, A.R.; Aisner, J.; Moss, R.A.; Lin, H.; Bertino, J.R.; Gibbon, D.; Doyle, L.A.; White, E.P.; Stein, M.N. A phase I trial of MK-2206 and hydroxychloroquine in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2019, 84(4), 899-907. doi: 10.1007/s00280-019-03919-x PMID: 31463691
  60. Haas, N.B.; Appleman, L.J.; Stein, M.; Redlinger, M.; Wilks, M.; Xu, X.; Onorati, A.; Kalavacharla, A.; Kim, T.; Zhen, C.J.; Kadri, S.; Segal, J.P.; Gimotty, P.A.; Davis, L.E.; Amaravadi, R.K. Autophagy inhibition to augment mTOR inhibition: A phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin. Cancer Res., 2019, 25(7), 2080-2087. doi: 10.1158/1078-0432.CCR-18-2204 PMID: 30635337
  61. Karasic, T.B.; O'Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.; Burrell, J.A.; Laheru, D.A.; Von Hoff, D.D.; Amaravadi, R.K.; Drebin, J.A.; O'Dwyer, P.J. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: A phase 2 randomized clinical trial. JAMA Oncol., 2019, 5(7), 993-998. doi: 10.1001/jamaoncol.2019.0684 PMID: 31120501
  62. Lim, M.; Bradshaw, S.; Kirchhof, M.G. Primary cutaneous low-grade B-cell lymphoma treated with hydroxychloroquine. JAAD Case Rep., 2020, 6(10), 1048-1050. doi: 10.1016/j.jdcr.2020.08.003 PMID: 32995443
  63. Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414. doi: 10.4161/auto.29231 PMID: 24991835
  64. Zeh, H.J.; Bahary, N.; Boone, B.A.; Singhi, A.D.; Miller-Ocuin, J.L.; Normolle, D.P.; Zureikat, A.H.; Hogg, M.E.; Bartlett, D.L.; Lee, K.K.; Tsung, A.; Marsh, J.W.; Murthy, P.; Tang, D.; Seiser, N.; Amaravadi, R.K.; Espina, V.; Liotta, L.; Lotze, M.T. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/NAB-paclitaxel in pancreatic cancer patients. Clin. Cancer Res., 2020, 26(13), 3126-3134. doi: 10.1158/1078-0432.CCR-19-4042 PMID: 32156749
  65. Patel, S.; Hurez, V.; Nawrocki, S.T.; Goros, M.; Michalek, J.; Sarantopoulos, J.; Curiel, T.; Mahalingam, D. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget, 2016, 7(37), 59087-59097. doi: 10.18632/oncotarget.10824 PMID: 27463016
  66. Scott, E.C.; Maziarz, R.T.; Spurgeon, S.E.; Medvedova, E.; Gajewski, J.; Reasor-Heard, S.; Park, B.; Kratz, A.; Thomas, G.V.; Loriaux, M.; Cascio, M.; Podolak, J.; Gordon, M.; Botelho, J.; Stadtmauer, E.; Amaravadi, R.; Vogl, D.T. Double autophagy stimulation using chemotherapy and mTOR inhibition combined with hydroxychloroquine for autophagy modulation in patients with relapsed or refractory multiple myeloma. Haematologica, 2017, 102(7), e261-e265. doi: 10.3324/haematol.2016.162321 PMID: 28385778
  67. Brazil, L.; Swampillai, A.L.; Mak, K.M.; Edwards, D.; Mesiri, P.; Clifton-Hadley, L.; Shaffer, R.; Lewis, J.; Watts, C.; Jeffries, S.; Gkogkou, P.; Chalmers, A.J.; Fersht, N.L.; Hackshaw, A.; Short, S.C. Hydroxychloroquine and short-course radiotherapy in elderly patients with newly diagnosed high-grade glioma: A randomized phase II trial. Neurooncol. Adv., 2020, 2(1), vdaa046. doi: 10.1093/noajnl/vdaa046 PMID: 32642699
  68. Horne, G.A.; Stobo, J.; Kelly, C.; Mukhopadhyay, A.; Latif, A.L.; Dixon-Hughes, J.; McMahon, L.; Cony-Makhoul, P.; Byrne, J.; Smith, G.; Koschmieder, S. BrÜmmendorf, T.H.; Schafhausen, P.; Gallipoli, P.; Thomson, F.; Cong, W.; Clark, R.E.; Milojkovic, D.; Helgason, G.V.; Foroni, L.; Nicolini, F.E.; Holyoake, T.L.; Copland, M. A randomised phase II trial of hydroxychloroquine and imatinib versus imatinib alone for patients with chronic myeloid leukaemia in major cytogenetic response with residual disease. Leukemia, 2020, 34(7), 1775-1786. doi: 10.1038/s41375-019-0700-9 PMID: 31925317
  69. Wang, P.; Burikhanov, R.; Jayswal, R.; Weiss, H.L.; Arnold, S.M.; Villano, J.L.; Rangnekar, V.M. Neoadjuvant administration of hydroxychloroquine in a phase 1 clinical trial induced plasma Par-4 levels and apoptosis in diverse tumors. Genes Cancer, 2018, 9(5-6), 190-197. doi: 10.18632/genesandcancer.181 PMID: 30603055
  70. Wolpin, B.M.; Rubinson, D.A.; Wang, X.; Chan, J.A.; Cleary, J.M.; Enzinger, P.C.; Fuchs, C.S.; McCleary, N.J.; Meyerhardt, J.A.; Ng, K.; Schrag, D.; Sikora, A.L.; Spicer, B.A.; Killion, L.; Mamon, H.; Kimmelman, A.C. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist, 2014, 19(6), 637-638. doi: 10.1634/theoncologist.2014-0086 PMID: 24821822
  71. Rangwala, R.; Leone, R.; Chang, Y.C.; Fecher, L.A.; Schuchter, L.M.; Kramer, A.; Tan, K.S.; Heitjan, D.F.; Rodgers, G.; Gallagher, M.; Piao, S.; Troxel, A.B.; Evans, T.L.; DeMichele, A.M.; Nathanson, K.L.; O'Dwyer, P.J.; Kaiser, J.; Pontiggia, L.; Davis, L.E.; Amaravadi, R.K. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy, 2014, 10(8), 1369-1379 a. doi: 10.4161/auto.29118 PMID: 24991839
  72. Boone, B.A.; Bahary, N.; Zureikat, A.H.; Moser, A.J.; Normolle, D.P.; Wu, W.C.; Singhi, A.D.; Bao, P.; Bartlett, D.L.; Liotta, L.A.; Espina, V.; Loughran, P.; Lotze, M.T.; Zeh, H.J., III Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann. Surg. Oncol., 2015, 22(13), 4402-4410. doi: 10.1245/s10434-015-4566-4 PMID: 25905586
  73. Goldberg, S.B.; Supko, J.G.; Neal, J.W.; Muzikansky, A.; Digumarthy, S.; Fidias, P.; Temel, J.S.; Heist, R.S.; Shaw, A.T.; McCarthy, P.O.; Lynch, T.J.; Sharma, S.; Settleman, J.E.; Sequist, L.V. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac. Oncol., 2012, 7(10), 1602-1608. doi: 10.1097/JTO.0b013e318262de4a PMID: 22878749
  74. Vogl, D.T.; Stadtmauer, E.A.; Tan, K.S.; Heitjan, D.F.; Davis, L.E.; Pontiggia, L.; Rangwala, R.; Piao, S.; Chang, Y.C.; Scott, E.C.; Paul, T.M.; Nichols, C.W.; Porter, D.L.; Kaplan, J.; Mallon, G.; Bradner, J.E.; Amaravadi, R.K. Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy, 2014, 10(8), 1380-1390. doi: 10.4161/auto.29264 PMID: 24991834
  75. Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; McAfee, Q.; Fisher, J.; Troxel, A.B.; Piao, S.; Heitjan, D.F.; Tan, K.S.; Pontiggia, L.; O'Dwyer, P.J.; Davis, L.E.; Amaravadi, R.K. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 2014, 10(8), 1359-1368. doi: 10.4161/auto.28984 PMID: 24991840
  76. Rangwala, R.; Chang, Y.C.; Hu, J.; Algazy, K.M.; Evans, T.L.; Fecher, L.A.; Schuchter, L.M.; Torigian, D.A.; Panosian, J.T.; Troxel, A.B.; Tan, K.S.; Heitjan, D.F.; DeMichele, A.M.; Vaughn, D.J.; Redlinger, M.; Alavi, A.; Kaiser, J.; Pontiggia, L.; Davis, L.E.; O'Dwyer, P.J.; Amaravadi, R.K. Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy, 2014, 10(8), 1391-1402 b. doi: 10.4161/auto.29119 PMID: 24991838
  77. El-Chemaly, S.; Taveira-Dasilva, A.; Goldberg, H.J.; Peters, E.; Haughey, M.; Bienfang, D.; Jones, A.M.; Julien-Williams, P.; Cui, Y.; Villalba, J.A.; Bagwe, S.; Maurer, R.; Rosas, I.O.; Moss, J.; Henske, E.P. Sirolimus and autophagy inhibition in lymphangioleiomyomatosis: Results of a phase I clinical trial. Chest, 2017, 151(6), 1302-1310. doi: 10.1016/j.chest.2017.01.033 PMID: 28192114
  78. Chi, K.H.; Ko, H.L.; Yang, K.L.; Lee, C.Y.; Chi, M.S.; Kao, S.J. Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: A pilot safety and effectiveness analysis in a small patient cohort. Oncotarget, 2015, 6(18), 16735-16745. a. doi: 10.18632/oncotarget.3793 PMID: 25944689
  79. Chi, M.S.; Lee, C.Y.; Huang, S.C.; Yang, K.L.; Ko, H.L.; Chen, Y.K.; Chung, C.H.; Liao, K.W.; Chi, K.H. Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients. Oncotarget, 2015, 6(30), 29808-29817. b. doi: 10.18632/oncotarget.5060 PMID: 26375670
  80. Mukhopadhyay, S.; Mahapatra, K.K.; Praharaj, P.P.; Patil, S.; Bhutia, S.K. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin. Cancer Biol., 2022 Oct 1;85, 196-208. doi: 10.1016/j.semcancer.2021.09.003 PMID: 34500075
  81. Al-Bari, M.A.A. A current view of molecular dissection in autophagy machinery. J. Physiol. Biochem., 2020, 76(3), 357-372. a. doi: 10.1007/s13105-020-00746-0 PMID: 32451934
  82. Zhao, Y.G.; Codogno, P.; Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol., 2021, 22(11), 733-750. doi: 10.1038/s41580-021-00392-4 PMID: 34302147
  83. Duan, Y.; Tian, X.; Liu, Q.; Jin, J.; Shi, J.; Hou, Y. Role of autophagy on cancer immune escape. Cell Commun. Signal., 2021, 19(1), 91. doi: 10.1186/s12964-021-00769-0 PMID: 34493296
  84. Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci., 2019, 134, 116-137. doi: 10.1016/j.ejps.2019.04.011 PMID: 30981885
  85. Schaaf, M.B.; Houbaert, D.; Meçe, O.; Agostinis, P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ., 2019, 26(4), 665-679. a. doi: 10.1038/s41418-019-0287-8 PMID: 30692642
  86. Chmurska, A.; Matczak, K.; Marczak, A. Two faces of autophagy in the struggle against cancer. Int. J. Mol. Sci., 2021, 22(6), 2981. doi: 10.3390/ijms22062981 PMID: 33804163
  87. Shin, D.W. Dual roles of autophagy and their potential drugs for improving cancer therapeutics. Biomol. Ther. (Seoul), 2020, 28(6), 503-511. doi: 10.4062/biomolther.2020.155 PMID: 33077698
  88. Niklaus, M.; Adams, O.; Berezowska, S.; Zlobec, I.; Graber, F.; Slotta-Huspenina, J.; Nitsche, U.; Rosenberg, R.; Tschan, M.P.; Langer, R. Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer. Oncotarget, 2017, 8(33), 54604-54615. doi: 10.18632/oncotarget.17554 PMID: 28903368
  89. Jena, B.C.; Rout, L.; Dey, A.; Mandal, M. Active autophagy in cancer-associated fibroblasts: Recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J. Cell. Physiol., 2021, 236(11), 7887-7902. doi: 10.1002/jcp.30419 PMID: 34008184
  90. Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov., 2019, 9(9), 1167-1181. doi: 10.1158/2159-8290.CD-19-0292 PMID: 31434711
  91. Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res., 2011, 17(4), 654-666. doi: 10.1158/1078-0432.CCR-10-2634 PMID: 21325294
  92. Nam, H.J. Autophagy modulators in cancer: Focus on cancer treatment. Life, 2021, 11(8), 839. doi: 10.3390/life11080839 PMID: 34440583
  93. Yang, G.; Li, Y.; Zhao, Y.; Ouyang, L.; Chen, Y.; Liu, B.; Liu, J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur. J. Med. Chem., 2021, 209, 112917. doi: 10.1016/j.ejmech.2020.112917 PMID: 33077263
  94. Chun, Y.; Kim, J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells, 2018, 7(12), 278. doi: 10.3390/cells7120278 PMID: 30572663
  95. Jogalekar, M.P.; Veerabathini, A.; Gangadaran, P. Recent developments in autophagy-targeted therapies in cancer. Exp. Biol. Med., 2021, 246(2), 207-212. doi: 10.1177/1535370220966545 PMID: 33167689
  96. Chiang, C.F.; Hsu, Y.H.; Liu, C.C.; Liang, P.C.; Miaw, S.C.; Lin, W.L. Pulsed-wave ultrasound hyperthermia enhanced nanodrug delivery combined with chloroquine exerts effective antitumor response and postpones recurrence. Sci. Rep., 2019, 9(1), 12448. doi: 10.1038/s41598-019-47345-8 PMID: 31462676
  97. Lin, Y.C.; Lin, J.F.; Wen, S.I.; Yang, S.C.; Tsai, T.F.; Chen, H.E.; Chou, K.Y.; Hwang, T.I. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung J. Med. Sci., 2017, 33(5), 215-223. doi: 10.1016/j.kjms.2017.01.004 PMID: 28433067
  98. Ruiz, A.; Rockfield, S.; Taran, N.; Haller, E.; Engelman, R.W.; Flores, I.; Panina-Bordignon, P.; Nanjundan, M. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis., 2016, 7(1), e2059. doi: 10.1038/cddis.2015.361 PMID: 26775710
  99. Golden, E.B.; Cho, H.Y.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Quinoline-based antimalarial drugs: A novel class of autophagy inhibitors. Neurosurg. Focus, 2015, 38(3), E12. doi: 10.3171/2014.12.FOCUS14748 PMID: 25727221
  100. Golden, E.B.; Cho, H.Y.; Jahanian, A.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg. Focus, 2014, 37(6), E12. doi: 10.3171/2014.9.FOCUS14504 PMID: 25434381
  101. Fleisher, B.; Mody, H.; Werkman, C.; Ait-Oudhia, S. Chloroquine sensitizes MDA-MB-231 cells to osimertinib through autophagy-apoptosis crosstalk pathway. Breast Cancer (Dove Med. Press), 2019, 11, 231-241. doi: 10.2147/BCTT.S211030 PMID: 31839713
  102. Ovejero-Sánchez, M.; González-Sarmiento, R.; Herrero, A.B. Synergistic effect of chloroquine and panobinostat in ovarian cancer through induction of DNA damage and inhibition of DNA repair. Neoplasia, 2021, 23(5), 515-528. doi: 10.1016/j.neo.2021.04.003 PMID: 33930758
  103. Tian, A.L.; Wu, Q.; Liu, P.; Zhao, L.; Martins, I.; Kepp, O.; Leduc, M.; Kroemer, G. Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response. Cell Death Dis., 2021, 12(1), 6. doi: 10.1038/s41419-020-03324-w PMID: 33414432
  104. Ferreira, P.M.P.; Ferreira, J.R.O.; de Sousa, R.W.R.; Bezerra, D.P.; Militão, G.C.G. Aminoquinolines as translational models for drug repurposing: Anticancer adjuvant properties and toxicokinetic-related features. J. Oncol., 2021, 2021, 3569349. doi: 10.1155/2021/3569349 PMID: 34527050
  105. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455. doi: 10.1080/15548627.2018.1474314 PMID: 29940786
  106. Nagelkerke, A.; Bussink, J.; van der Kogel, A.J.; Sweep, F.C.; Span, P.N. The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response. Radiother. Oncol., 2013, 108(3), 415-421. doi: 10.1016/j.radonc.2013.06.037 PMID: 23891100
  107. Duarte, D.; Vale, N. New trends for antimalarial drugs: Synergism between antineoplastics and antimalarials on breast cancer cells. Biomolecules, 2020, 10(12), 1623. doi: 10.3390/biom10121623 PMID: 33271968
  108. Gil, D.; Laidler, P.; Zarzycka, M.; Dulińska-Litewka, J. Inhibition effect of chloroquine and integrin-linked kinase knockdown on translation in melanoma cells. Int. J. Mol. Sci., 2021, 22(7), 3682. doi: 10.3390/ijms22073682 PMID: 33916175
  109. Hsu, S.P.C.; Kuo, J.S.; Chiang, H.C.; Wang, H.E.; Wang, Y.S.; Huang, C.C.; Huang, Y.C.; Chi, M.S.; Mehta, M.P.; Chi, K.H. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells. Oncotarget, 2018, 9(6), 6883-6896. doi: 10.18632/oncotarget.23855 PMID: 29467937
  110. Avsec, D.; Jakoš Djordjevic, A.T.; Kandušer, M.; Podgornik, H.; Škerget, M.; Mlinaric-Rašcan, I. Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers, 2021, 13(18), 4557. doi: 10.3390/cancers13184557 PMID: 34572784
  111. Thorburn, A. Crosstalk between autophagy and apoptosis: Mechanisms and therapeutic implications. Prog. Mol. Biol. Transl. Sci., 2020, 172, 55-65. doi: 10.1016/bs.pmbts.2020.04.023 PMID: 32620250
  112. Chou, K.Y.; Chen, P.C.; Chang, A.C.; Tsai, T.F.; Chen, H.E.; Ho, C.Y.; Hwang, T.I. Attenuation of chloroquine and hydroxychloroquine on the invasive potential of bladder cancer through targeting matrix metalloproteinase 2 expression. Environ. Toxicol., 2021, 36(11), 2138-2145. doi: 10.1002/tox.23328 PMID: 34278709
  113. Morgan, M.J.; Fitzwalter, B.E.; Owens, C.R.; Powers, R.K.; Sottnik, J.L.; Gamez, G.; Costello, J.C.; Theodorescu, D.; Thorburn, A. Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proc. Natl. Acad. Sci. USA, 2018, 115(36), E8479-E8488. doi: 10.1073/pnas.1706526115 PMID: 30127018
  114. Hwang, J.R.; Kim, W.Y.; Cho, Y.J.; Ryu, J.Y.; Choi, J.J.; Jeong, S.Y.; Kim, M.S.; Kim, J.H.; Paik, E.S.; Lee, Y.Y.; Han, H.D.; Lee, J.W. Chloroquine reverses chemoresistance via upregulation of p21WAF1/CIP1 and autophagy inhibition in ovarian cancer. Cell Death Dis., 2020, 11(12), 1034. doi: 10.1038/s41419-020-03242-x PMID: 33277461
  115. Zhu, J.; Zheng, Y.; Zhang, H.; Zhu, J.; Sun, H. Low concentration of chloroquine enhanced efficacy of cisplatin in the treatment of human ovarian cancer dependent on autophagy. Am. J. Transl. Res., 2017, 9(9), 4046-4058. PMID: 28979680
  116. Rebecca, V.W.; Nicastri, M.C.; Fennelly, C.; Chude, C.I.; Barber-Rotenberg, J.S.; Ronghe, A.; McAfee, Q.; McLaughlin, N.P.; Zhang, G.; Goldman, A.R.; Ojha, R.; Piao, S.; Noguera-Ortega, E.; Martorella, A.; Alicea, G.M.; Lee, J.J.; Schuchter, L.M.; Xu, X.; Herlyn, M.; Marmorstein, R.; Gimotty, P.A.; Speicher, D.W.; Winkler, J.D.; Amaravadi, R.K. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov., 2019, 9(2), 220-229. doi: 10.1158/2159-8290.CD-18-0706 PMID: 30442709
  117. Vergoten, G.; Bailly, C. Binding of hydroxychloroquine and chloroquine dimers to palmitoyl-protein thioesterase 1 (PPT1) and its glycosylated forms: A computational approach. J. Biomol. Struct. Dyn., 2021, 1-9. doi: 10.1080/07391102.2021.1908167 PMID: 33876698
  118. Cho, S.; Dawson, P.E.; Dawson, G. Role of palmitoyl-protein thioesterase in cell death: Implications for infantile neuronal ceroid lipofuscinosis. Eur. J. Paediatr. Neurol., 2001, 5(Suppl. A), 53-55. doi: 10.1053/ejpn.2000.0435 PMID: 11589008
  119. Cho, S.; Dawson, G. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J. Neurochem., 2000, 74(4), 1478-1488. doi: 10.1046/j.1471-4159.2000.0741478.x PMID: 10737604
  120. Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; Ronghe, A.; Jain, V.; Winkler, J.D.; Speicher, D.W.; Mastio, J.; Gimotty, P.A.; Xu, X.; Wherry, E.J.; Gabrilovich, D.I.; Amaravadi, R.K. PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight, 2020, 5(17), e133225. doi: 10.1172/jci.insight.133225 PMID: 32780726
  121. Ratikan, J.A.; Sayre, J.W.; Schaue, D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(4), 761-768. doi: 10.1016/j.ijrobp.2013.07.024 PMID: 24138918
  122. Ancel, J.; Perotin, J.M.; Dewolf, M.; Launois, C.; Mulette, P.; Nawrocki-Raby, B.; Dalstein, V.; Gilles, C.; Deslée, G.; Polette, M.; Dormoy, V. Hypoxia in lung cancer management: A translational approach. Cancers, 2021, 13(14), 3421. doi: 10.3390/cancers13143421 PMID: 34298636
  123. Kabakov, A.E.; Yakimova, A.O. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers, 2021, 13(5), 1102. doi: 10.3390/cancers13051102 PMID: 33806538
  124. Ferreira, P.M.P.; Sousa, R.W.R.; Ferreira, J.R.O.; Militão, G.C.G.; Bezerra, D.P. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res., 2021, 168, 105582. doi: 10.1016/j.phrs.2021.105582 PMID: 33775862
  125. Jutten, B.; Keulers, T.G.; Peeters, H.J.M.; Schaaf, M.B.E.; Savelkouls, K.G.M.; Compter, I.; Clarijs, R.; Schijns, O.E.M.G.; Ackermans, L.; Teernstra, O.P.M.; Zonneveld, M.I.; Colaris, R.M.E.; Dubois, L.; Vooijs, M.A.; Bussink, J.; Sotelo, J.; Theys, J.; Lammering, G.; Rouschop, K.M.A. EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition. Autophagy, 2018, 14(2), 283-295. doi: 10.1080/15548627.2017.1409926 PMID: 29377763
  126. Li, Y.; Cho, M.H.; Lee, S.S.; Lee, D.E.; Cheong, H.; Choi, Y. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. J. Control. Release, 2020, 325, 100-110. doi: 10.1016/j.jconrel.2020.06.025 PMID: 32621826
  127. Lin, T.; Zhang, Q.; Yuan, A.; Wang, B.; Zhang, F.; Ding, Y.; Cao, W.; Chen, W.; Guo, H. Synergy of tumor microenvironment remodeling and autophagy inhibition to sensitize radiation for bladder cancer treatment. Theranostics, 2020, 10(17), 7683-7696. doi: 10.7150/thno.45358 PMID: 32685013
  128. Zou, Y.M.; Hu, G.Y.; Zhao, X.Q.; Lu, T.; Zhu, F.; Yu, S.Y.; Xiong, H. Hypoxia-induced autophagy contributes to radioresistance via c-Jun-mediated Beclin1 expression in lung cancer cells. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(5), 761-767. doi: 10.1007/s11596-014-1349-2 PMID: 25318890
  129. Xu, R.; Ji, Z.; Xu, C.; Zhu, J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine, 2018, 97(46), e12912. doi: 10.1097/MD.0000000000012912 PMID: 30431566
  130. Krueger, J.; Santinon, F.; Kazanova, A.; Issa, M.E.; Larrivee, B.; Kremer, R.; Milhalcioiu, C.; Rudd, C.E. Hydroxychloroquine (HCQ) decreases the benefit of anti-PD-1 immune checkpoint blockade in tumor immunotherapy. PLoS One, 2021, 16(6), e0251731. doi: 10.1371/journal.pone.0251731 PMID: 34181666
  131. Repnik, U.; Hafner Česen, M.; Turk, B. Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion, 2014, 19 Pt A, 49-57. doi: 10.1016/j.mito.2014.06.006 PMID: 24984038
  132. Boya, P.; Gonzalez-Polo, R.A.; Poncet, D.; Andreau, K.; Vieira, H.L.; Roumier, T.; Perfettini, J.L.; Kroemer, G. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 2003, 22(25), 3927-3936. doi: 10.1038/sj.onc.1206622 PMID: 12813466
  133. Boya, P.; Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene, 2008, 27(50), 6434-6451. doi: 10.1038/onc.2008.310 PMID: 18955971
  134. Sironi, J.; Aranda, E.; Nordstrøm, L.U.; Schwartz, E.L. Lysosome membrane permeabilization and disruption of the molecular target of rapamycin (mTOR)-lysosome interaction are associated with the inhibition of lung cancer cell proliferation by a chloroquinoline analog. Mol. Pharmacol., 2019, 95(1), 127-138. doi: 10.1124/mol.118.113118 PMID: 30409790
  135. Charris, J.E.; Monasterios, M.C.; Acosta, M.E.; Rodríguez, M.A.; Gamboa, N.D.; Martínez, G.P.; Rojas, H.R.; Mijares, M.R.; De Sanctis, J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res., 2019, 28(11), 2050-2066. doi: 10.1007/s00044-019-02435-0
  136. Fan, C.; Wang, W.; Zhao, B.; Zhang, S.; Miao, J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem., 2006, 14(9), 3218-3222. doi: 10.1016/j.bmc.2005.12.035 PMID: 16413786
  137. Hu, T.; Li, P.; Luo, Z.; Chen, X.; Zhang, J.; Wang, C.; Chen, P.; Dong, Z. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(1), 43-49. doi: 10.3892/or.2015.4380 PMID: 26530158
  138. Jiang, P.D.; Zhao, Y.L.; Shi, W.; Deng, X.Q.; Xie, G.; Mao, Y.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell. Physiol. Biochem., 2008, 22(5-6), 431-440 a. doi: 10.1159/000185488 PMID: 19088425
  139. Jiang, P.D.; Zhao, Y.L.; Yang, S.Y.; Mao, Y.Q.; Zheng, Y.Z.; Li, Z.G.; Wei, Y.Q. Effects of chloroquine diphosphate on proliferation and apoptosis of human leukemic K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2008, 16(4), 768-771 b. PMID: 18718057
  140. Liu, L.; Han, C.; Yu, H.; Zhu, W.; Cui, H.; Zheng, L.; Zhang, C.; Yue, L. Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial mediated apoptosis. Oncol. Rep., 2018, 39(6), 2807-2816. doi: 10.3892/or.2018.6363 PMID: 29658606
  141. Ramírez, H.; Fernandez, E.; Rodrigues, J.; Mayora, S.; Martínez, G.; Celis, C.; De Sanctis, J.B.; Mijares, M.; Charris, J. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch. Pharm., 2021, 354(7), e2100002. doi: 10.1002/ardp.202100002 PMID: 33660349
  142. Ramírez, H.; Rodrigues, J.R.; Mijares, M.R.; De Sanctis, J.B.; Charris, J.E. Synthesis and biological activity of 2-2-(7-chloroquinolin-4-ylthio)-4-methylthiazol-5-yl-N-phenylacetamide derivatives as antimalarial and cytotoxic agents. J. Chem. Res., 2020, 44(5-6), 305-314. doi: 10.1177/1747519819899073
  143. Zheng, Y.; Zhao, Y.L.; Deng, X.; Yang, S.; Mao, Y.; Li, Z.; Jiang, P.; Zhao, X.; Wei, Y. Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest., 2009, 27(3), 286-292. doi: 10.1080/07357900802427927 PMID: 19194831
  144. Jiang, P.D.; Zhao, Y.L.; Deng, X.Q.; Mao, Y.Q.; Shi, W.; Tang, Q.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed. Pharmacother., 2010, 64(9), 609-614. doi: 10.1016/j.biopha.2010.06.004 PMID: 20888174
  145. Ganguli, A.; Choudhury, D.; Datta, S.; Bhattacharya, S.; Chakrabarti, G. Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis. Biochimie, 2014, 107 Pt B, 338-349. doi: 10.1016/j.biochi.2014.10.001 PMID: 25308836
  146. Masud Alam, M.; Kariya, R.; Kawaguchi, A.; Matsuda, K.; Kudo, E.; Okada, S. Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress. Apoptosis, 2016, 21(10), 1191-1201. doi: 10.1007/s10495-016-1277-7 PMID: 27484211
  147. Makowska, A.; Eble, M.; Prescher, K.; Hoß, M.; Kontny, U. Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells to irradiation by blocking autophagy. PLoS One, 2016, 11(11), e0166766. doi: 10.1371/journal.pone.0166766 PMID: 27902742
  148. Monma, H.; Iida, Y.; Moritani, T.; Okimoto, T.; Tanino, R.; Tajima, Y.; Harada, M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS One, 2018, 13(3), e0193990. doi: 10.1371/journal.pone.0193990 PMID: 29513749
  149. Johnson, C.E.; Hunt, D.K.; Wiltshire, M.; Herbert, T.P.; Sampson, J.R.; Errington, R.J.; Davies, D.M.; Tee, A.R. Endoplasmic reticulum stress and cell death in mTORC1-overactive cells is induced by nelfinavir and enhanced by chloroquine. Mol. Oncol., 2015, 9(3), 675-688. doi: 10.1016/j.molonc.2014.11.005 PMID: 25498902
  150. Lopiccolo, J.; Kawabata, S.; Gills, J.J.; Dennis, P.A. Combining nelfinavir with chloroquine inhibits in vivo growth of human lung cancer xenograft tumors. In Vivo, 2021, 35(1), 141-145. doi: 10.21873/invivo.12241 PMID: 33402459
  151. Maycotte, P.; Aryal, S.; Cummings, C.T.; Thorburn, J.; Morgan, M.J.; Thorburn, A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy, 2012, 8(2), 200-212. doi: 10.4161/auto.8.2.18554 PMID: 22252008
  152. Hao, X.; Li, W. Chloroquine diphosphate suppresses liver cancer via inducing apoptosis in Wistar rats using interventional therapy. Oncol. Lett., 2021, 21(3), 233. doi: 10.3892/ol.2021.12494 PMID: 33613722
  153. Eloranta, K.; Cairo, S.; Liljeström, E.; Soini, T.; Kyrönlahti, A.; Judde, J.G.; Wilson, D.B.; Heikinheimo, M.; Pihlajoki, M. Chloroquine triggers cell death and inhibits PARPs in cell models of aggressive hepatoblastoma. Front. Oncol., 2020, 10, 1138. doi: 10.3389/fonc.2020.01138 PMID: 32766148
  154. Burikhanov, R.; Hebbar, N.; Noothi, S.K.; Shukla, N.; Sledziona, J.; Araujo, N.; Kudrimoti, M.; Wang, Q.J.; Watt, D.S.; Welch, D.R.; Maranchie, J.; Harada, A.; Rangnekar, V.M. Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep., 2017, 18(2), 508-519. doi: 10.1016/j.celrep.2016.12.051 PMID: 28076793
  155. Jia, B.; Xue, Y.; Yan, X.; Li, J.; Wu, Y.; Guo, R.; Zhang, J.; Zhang, L.; Li, Y.; Liu, Y.; Sun, L. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol. Lett., 2018, 16(3), 3509-3516. doi: 10.3892/ol.2018.9131 PMID: 30127955
  156. Nakano, K.; Masui, T.; Yogo, A.; Uchida, Y.; Sato, A.; Kasai, Y.; Nagai, K.; Anazawa, T.; Kawaguchi, Y.; Uemoto, S. Chloroquine induces apoptosis in pancreatic neuroendocrine neoplasms via endoplasmic reticulum stress. Endocr. Relat. Cancer, 2020, 27(7), 431-439. doi: 10.1530/ERC-20-0028 PMID: 32369772
  157. Pandey, S.; Sharma, V.K.; Biswas, A.; Lahiri, M.; Basu, S. Small molecule-mediated induction of endoplasmic reticulum stress in cancer cells. RSC Med Chem., 2021, 12(9), 1604-1611. doi: 10.1039/D1MD00095K PMID: 34671742
  158. Arneth, B. Tumor microenvironment. Medicina, 2019, 56(1), 15. doi: 10.3390/medicina56010015 PMID: 31906017
  159. Boyle, S.T.; Johan, M.Z.; Samuel, M.S. Tumour-directed microenvironment remodelling at a glance. J. Cell Sci., 2020, 133(24), jcs247783. doi: 10.1242/jcs.247783 PMID: 33443095
  160. Liang, W.; Huang, X.; Carlos, C.J.J.; Lu, X. Research progress of tumor microenvironment and tumor-associated macrophages. Clin. Transl. Oncol., 2020, 22(12), 2141-2152. doi: 10.1007/s12094-020-02367-x PMID: 32447645
  161. Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol., 2020, 11. doi: 10.3389/fimmu.2020.583084 PMID: 33365025
  162. Cheng, N.; Bai, X.; Shu, Y.; Ahmad, O.; Shen, P. Targeting tumor-associated macrophages as an antitumor strategy. Biochem. Pharmacol., 2021, 183, 114354. doi: 10.1016/j.bcp.2020.114354 PMID: 33279498
  163. Crezee, T.; Rabold, K.; de Jong, L.; Jaeger, M.; Netea-Maier, R.T. Metabolic programming of tumor associated macrophages in the context of cancer treatment. Ann. Transl. Med., 2020, 8(16), 1028. doi: 10.21037/atm-20-1114 PMID: 32953828
  164. Li, Y.; Cao, F.; Li, M.; Li, P.; Yu, Y.; Xiang, L.; Xu, T.; Lei, J.; Tai, Y.Y.; Zhu, J.; Yang, B.; Jiang, Y.; Zhang, X.; Duo, L.; Chen, P.; Yu, X. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J. Exp. Clin. Cancer Res., 2018, 37(1), 259. doi: 10.1186/s13046-018-0938-5 PMID: 30373678
  165. Zhang, Y.; Cao, Y.; Sun, X.; Feng, Y.; Du, Y.; Liu, F.; Yu, C.; Jin, F. Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int. Immunopharmacol., 2017, 42, 100-107. doi: 10.1016/j.intimp.2016.11.027 PMID: 27912145
  166. Guo, Y.; Feng, Y.; Cui, X.; Wang, Q.; Pan, X. Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice. Cancer Immunol. Immunother., 2019, 68(12), 1909-1920. doi: 10.1007/s00262-019-02415-8 PMID: 31641796
  167. Zarogoulidis, P.; Petanidis, S.; Domvri, K.; Kioseoglou, E.; Anestakis, D.; Freitag, L.; Zarogoulidis, K.; Hohenforst-Schmidt, W.; Eberhardt, W. Autophagy inhibition upregulates CD4+ tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol. Oncol., 2016, 10(10), 1516-1531. doi: 10.1016/j.molonc.2016.08.005 PMID: 27692344
  168. Zamame, R.J.A.; Romagnoli, G.G.; Falasco, B.F.; Gorgulho, C.M.; Sanzochi, F.C.; Dos Santos, D.C.; Junior, J.P.A.; Lotze, M.T.; Ureshino, R.P.; Kaneno, R. Blocking drug-induced autophagy with chloroquine in HCT-116 colon cancer cells enhances DC maturation and T cell responses induced by tumor cell lysate. Int. Immunopharmacol., 2020, 84, 106495. doi: 10.1016/j.intimp.2020.106495 PMID: 32298965
  169. Biffi, G.; Tuveson, D.A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev., 2021, 101(1), 147-176. doi: 10.1152/physrev.00048.2019 PMID: 32466724
  170. Sotgia, F.; Martinez-Outschoorn, U.E.; Howell, A.; Pestell, R.G.; Pavlides, S.; Lisanti, M.P. Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annu. Rev. Pathol., 2012, 7(1), 423-467. doi: 10.1146/annurev-pathol-011811-120856 PMID: 22077552
  171. Martínez-Outschoorn, U.E.; Trimmer, C.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Zhou, J.; Wang, C.; Pavlides, S.; Martinez-Cantarin, M.P.; Capozza, F.; Witkiewicz, A.K.; Flomenberg, N.; Howell, A.; Pestell, R.G.; Caro, J.; Lisanti, M.P.; Sotgia, F. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle, 2010, 9(17), 3515-3533. doi: 10.4161/cc.9.17.12928 PMID: 20855962
  172. Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204. doi: 10.1186/s13046-020-01709-5 PMID: 32993787
  173. De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474. doi: 10.1038/nrc.2017.51 PMID: 28706266
  174. El Alaoui-Lasmaili, K.; Faivre, B. Antiangiogenic therapy: Markers of response, "normalization" and resistance. Crit. Rev. Oncol. Hematol., 2018, 128, 118-129. doi: 10.1016/j.critrevonc.2018.06.001 PMID: 29958627
  175. Frezzetti, D.; Gallo, M.; Maiello, M.R.; D'Alessio, A.; Esposito, C.; Chicchinelli, N.; Normanno, N.; De Luca, A. VEGF as a potential target in lung cancer. Expert Opin. Ther. Targets, 2017, 21(10), 959-966. doi: 10.1080/14728222.2017.1371137 PMID: 28831824
  176. Itatani, Y.; Kawada, K.; Yamamoto, T.; Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int. J. Mol. Sci., 2018, 19(4), 1232. doi: 10.3390/ijms19041232 PMID: 29670046
  177. Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427. doi: 10.1038/nrd3455 PMID: 21629292
  178. Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 2005, 307(5706), 58-62. doi: 10.1126/science.1104819 PMID: 15637262
  179. Matuszewska, K.; Pereira, M.; Petrik, D.; Lawler, J.; Petrik, J. Normalizing tumor vasculature to reduce hypoxia, enhance perfusion, and optimize therapy uptake. Cancers, 2021, 13(17), 4444. doi: 10.3390/cancers13174444 PMID: 34503254
  180. Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis, 2017, 20(4), 409-426. doi: 10.1007/s10456-017-9562-9 PMID: 28660302
  181. Park, J.S.; Kim, I.K.; Han, S.; Park, I.; Kim, C.; Bae, J.; Oh, S.J.; Lee, S.; Kim, J.H.; Woo, D.C.; He, Y.; Augustin, H.G.; Kim, I.; Lee, D.; Koh, G.Y. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell, 2016, 30(6), 953-967. doi: 10.1016/j.ccell.2016.10.018 PMID: 27960088
  182. Schaaf, M.B.; Houbaert, D.; Meçe, O.; To, S.K.; Ganne, M.; Maes, H.; Agostinis, P. Lysosomal pathways and autophagy distinctively control endothelial cell behavior to affect tumor vasculature. Front. Oncol., 2019, 9, 171. doi: 10.3389/fonc.2019.00171 PMID: 30949450
  183. Tian, L.; Goldstein, A.; Wang, H.; Ching Lo, H.; Sun Kim, I.; Welte, T.; Sheng, K.; Dobrolecki, L.E.; Zhang, X.; Putluri, N.; Phung, T.L.; Mani, S.A.; Stossi, F.; Sreekumar, A.; Mancini, M.A.; Decker, W.K.; Zong, C.; Lewis, M.T.; Zhang, X.H. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 2017, 544(7649), 250-254. doi: 10.1038/nature21724 PMID: 28371798
  184. Liu, Z.; Wang, Y.; Huang, Y.; Kim, B.Y.S.; Shan, H.; Wu, D.; Jiang, W. Tumor vasculatures: A new target for cancer immunotherapy. Trends Pharmacol. Sci., 2019, 40(9), 613-623. doi: 10.1016/j.tips.2019.07.001 PMID: 31331639
  185. Maes, H.; Kuchnio, A.; Carmeliet, P.; Agostinis, P. Chloroquine anticancer activity is mediated by autophagy-independent effects on the tumor vasculature. Mol. Cell. Oncol., 2015, 3(1), e970097. doi: 10.4161/23723548.2014.970097 PMID: 27308577
  186. Maes, H.; Kuchnio, A.; Peric, A.; Moens, S.; Nys, K.; De Bock, K.; Quaegebeur, A.; Schoors, S.; Georgiadou, M.; Wouters, J.; Vinckier, S.; Vankelecom, H.; Garmyn, M.; Vion, A.C.; Radtke, F.; Boulanger, C.; Gerhardt, H.; Dejana, E.; Dewerchin, M.; Ghesquière, B.; Annaert, W.; Agostinis, P.; Carmeliet, P. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell, 2014, 26(2), 190-206. doi: 10.1016/j.ccr.2014.06.025 PMID: 25117709
  187. Maes, H.; Kuchnio, A.; Carmeliet, P.; Agostinis, P. How to teach an old dog new tricks: Autophagy-independent action of chloroquine on the tumor vasculature. Autophagy, 2014, 10(11), 2082-2084. doi: 10.4161/auto.36259 PMID: 25484095
  188. Yang, T.; Xiao, H.; Liu, X.; Wang, Z.; Zhang, Q.; Wei, N.; Guo, X. Vascular normalization: A new window opened for cancer therapies. Front. Oncol., 2021, 11, 719836. doi: 10.3389/fonc.2021.719836 PMID: 34476218
  189. Hounjet, J.; Habets, R.; Schaaf, M.B.; Hendrickx, T.C.; Barbeau, L.M.O.; Yahyanejad, S.; Rouschop, K.M.; Groot, A.J.; Vooijs, M. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene, 2019, 38(27), 5457-5468. doi: 10.1038/s41388-019-0802-x PMID: 30967635
  190. Li, L.Q.; Pan, D.; Zhang, S.W. -Y-Xie, D.; Zheng, X.L.; Chen, H. Autophagy regulates chemoresistance of gastric cancer stem cells via the Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3402-3407. doi: 10.26355/eurrev_201806_15162 PMID: 29917191
  191. Lv, T.; Li, Z.; Xu, L.; Zhang, Y.; Chen, H.; Gao, Y. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater., 2018, 76, 257-274. doi: 10.1016/j.actbio.2018.06.034 PMID: 29960010
  192. López-Gil, J.C.; Martin-Hijano, L.; Hermann, P.C.; Sainz, B., Jr The CXCL12 crossroads in cancer stem cells and their niche. Cancers , 2021, 13(3), 469. doi: 10.3390/cancers13030469 PMID: 33530455
  193. Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280. doi: 10.3389/fimmu.2020.01280 PMID: 32849491
  194. Chan, M.M.; Chen, R.; Fong, D. Targeting cancer stem cells with dietary phytochemical - Repositioned drug combinations. Cancer Lett., 2018, 433, 53-64. doi: 10.1016/j.canlet.2018.06.034 PMID: 29960048
  195. Duan, H.; Liu, Y.; Gao, Z.; Huang, W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm. Sin. B, 2021, 11(1), 55-70. doi: 10.1016/j.apsb.2020.09.016 PMID: 33532180
  196. Fong, D.; Christensen, C.T.; Chan, M.M. Targeting cancer stem cells with repurposed drugs to improve current therapies. Recent Pat. Anticancer Drug Discov., 2021, 16(2), 136-160. doi: 10.2174/1574892816666210208232251 PMID: 33563159
  197. Vazquez-Martin, A.; López-Bonetc, E.; Cufí, S.; Oliveras-Ferraros, C.; Del Barco, S.; Martin-Castillo, B.; Menendez, J.A. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist. Updat., 2011, 14(4-5), 212-223. doi: 10.1016/j.drup.2011.04.003 PMID: 21600837
  198. Datta, S.; Choudhury, D.; Das, A.; Mukherjee, D.D.; Dasgupta, M.; Bandopadhyay, S.; Chakrabarti, G. Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway. Apoptosis, 2019, 24(5-6), 414-433. doi: 10.1007/s10495-019-01526-y PMID: 30767087
  199. Hao, C.; Liu, G.; Tian, G. Autophagy inhibition of cancer stem cells promotes the efficacy of cisplatin against non-small cell lung carcinoma. Ther. Adv. Respir. Dis., 2019, 13. doi: 10.1177/1753466619866097 PMID: 31368411
  200. Song, Y.J.; Zhang, S.S.; Guo, X.L.; Sun, K.; Han, Z.P.; Li, R.; Zhao, Q.D.; Deng, W.J.; Xie, X.Q.; Zhang, J.W.; Wu, M.C.; Wei, L.X. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett., 2013, 339(1), 70-81. doi: 10.1016/j.canlet.2013.07.021 PMID: 23879969
  201. Bousquet, G.; El Bouchtaoui, M.; Sophie, T.; Leboeuf, C.; de Bazelaire, C.; Ratajczak, P.; Giacchetti, S.; de Roquancourt, A.; Bertheau, P.; Verneuil, L.; Feugeas, J.P.; Espié, M.; Janin, A. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget, 2017, 8(21), 35205-35221. doi: 10.18632/oncotarget.16925 PMID: 28445132
  202. Choi, D.S.; Blanco, E.; Kim, Y.S.; Rodriguez, A.A.; Zhao, H.; Huang, T.H.; Chen, C.L.; Jin, G.; Landis, M.D.; Burey, L.A.; Qian, W.; Granados, S.M.; Dave, B.; Wong, H.H.; Ferrari, M.; Wong, S.T.; Chang, J.C. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells, 2014, 32(9), 2309-2323. doi: 10.1002/stem.1746 PMID: 24809620
  203. Liang, D.H.; Choi, D.S.; Ensor, J.E.; Kaipparettu, B.A.; Bass, B.L.; Chang, J.C. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett., 2016, 376(2), 249-258. doi: 10.1016/j.canlet.2016.04.002 PMID: 27060208
  204. Stagni, V.; Kaminari, A.; Sideratou, Z.; Sakellis, E.; Vlahopoulos, S.A.; Tsiourvas, D. Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. Int. J. Pharm., 2020, 585, 119465. doi: 10.1016/j.ijpharm.2020.119465 PMID: 32497731
  205. Sun, R.; Shen, S.; Zhang, Y.J.; Xu, C.F.; Cao, Z.T.; Wen, L.P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55. doi: 10.1016/j.biomaterials.2016.06.038 PMID: 27376558
  206. Firat, E.; Weyerbrock, A.; Gaedicke, S.; Grosu, A.L.; Niedermann, G. Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote γ-irradiation-induced cell death in primary stem-like glioma cells. PLoS One, 2012, 7(10), e47357. doi: 10.1371/journal.pone.0047357 PMID: 23091617
  207. Balic, A.; Sørensen, M.D.; Trabulo, S.M.; Sainz, B., Jr; Cioffi, M.; Vieira, C.R.; Miranda-Lorenzo, I.; Hidalgo, M.; Kleeff, J.; Erkan, M.; Heeschen, C. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol. Cancer Ther., 2014, 13(7), 1758-1771. doi: 10.1158/1535-7163.MCT-13-0948 PMID: 24785258
  208. Yue, D.; Zhang, D.; Shi, X.; Liu, S.; Li, A.; Wang, D.; Qin, G.; Ping, Y.; Qiao, Y.; Chen, X.; Wang, F.; Chen, R.; Zhao, S.; Wang, L.; Zhang, Y. Chloroquine inhibits stemness of esophageal squamous cell carcinoma cells through targeting CXCR4-STAT3 pathway. Front. Oncol., 2020, 10, 311. doi: 10.3389/fonc.2020.00311 PMID: 32232002
  209. Roy, B.C.; Ahmed, I.; Ramalingam, S.; Jala, V.; Haribabu, B.; Ramamoorthy, P.; Ashcraft, J.; Valentino, J.; Anant, S.; Sampath, V.; Umar, S. Co-localization of autophagy-related protein p62 with cancer stem cell marker dclk1 may hamper dclk1's elimination during colon cancer development and progression. Oncotarget, 2019, 10(24), 2340-2354. doi: 10.18632/oncotarget.26684 PMID: 31040926
  210. Al-Bari, M.A.A. Co-targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J. Cell. Mol. Med., 2020, 24(20), 11667-11679. doi: 10.1111/jcmm.15879 PMID: 32935427
  211. Nazari, A.; Khorramdelazad, H.; Hassanshahi, G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int. J. Clin. Oncol., 2017, 22(6), 991-1000. doi: 10.1007/s10147-017-1187-x PMID: 29022185
  212. Jung, M.J.; Rho, J.K.; Kim, Y.M.; Jung, J.E.; Jin, Y.B.; Ko, Y.G.; Lee, J.S.; Lee, S.J.; Lee, J.C.; Park, M.J. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene, 2013, 32(2), 209-221. doi: 10.1038/onc.2012.37 PMID: 22370645
  213. Saur, D.; Seidler, B.; Schneider, G.; Algül, H.; Beck, R.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Schmid, R.M. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology, 2005, 129(4), 1237-1250. doi: 10.1053/j.gastro.2005.06.056 PMID: 16230077
  214. Sun, X.; Cheng, G.; Hao, M.; Zheng, J.; Zhou, X.; Zhang, J.; Taichman, R.S.; Pienta, K.J.; Wang, J. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev., 2010, 29(4), 709-722. doi: 10.1007/s10555-010-9256-x PMID: 20839032
  215. Wu, X.; Zhang, H.; Sui, Z.; Wang, Y.; Yu, Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol. Med., 2021, 18(2), 401-410. doi: 10.20892/j.issn.2095-3941.2020.0140 PMID: 33710803
  216. Wu, P.F.; Lu, Z.P.; Cai, B.B.; Tian, L.; Zou, C.; Jiang, K.R.; Miao, Y. Role of CXCL12/CXCR4 signaling axis in pancreatic cancer. Chin. Med. J., 2013, 126(17), 3371-3374. PMID: 24033967
  217. Würth, R.; Bajetto, A.; Harrison, J.K.; Barbieri, F.; Florio, T. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci., 2014, 8, 144. doi: 10.3389/fncel.2014.00144 PMID: 24904289
  218. Zhang, J.; Liu, C.; Mo, X.; Shi, H.; Li, S. Mechanisms by which CXCR4/CXCL12 cause metastatic behavior in pancreatic cancer. Oncol. Lett., 2018, 15(2), 1771-1776. doi: 10.3892/ol.2017.7512 PMID: 29434873
  219. Kim, J.; Yip, M.L.; Shen, X.; Li, H.; Hsin, L.Y.; Labarge, S.; Heinrich, E.L.; Lee, W.; Lu, J.; Vaidehi, N. Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One, 2012, 7(2), e31004. doi: 10.1371/journal.pone.0031004 PMID: 22319600
  220. Xie, Y.; Wang, Y.; Li, J.; Hang, Y.; Oupický, D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(2), e1528. doi: 10.1002/wnan.1528 PMID: 29700990
  221. Yu, F.; Xie, Y.; Wang, Y.; Peng, Z.H.; Li, J.; Oupický, D. Chloroquine-containing HPMA copolymers as polymeric inhibitors of cancer cell migration mediated by the CXCR4/SDF-1 chemokine axis. ACS Macro Lett., 2016, 5(3), 342-345. doi: 10.1021/acsmacrolett.5b00857 PMID: 27795873
  222. Yin, S.; Xia, C.; Wang, Y.; Wan, D.; Rao, J.; Tang, X.; Wei, J.; Wang, X.; Li, M.; Zhang, Z.; Liu, J.; He, Q. Dual receptor recognizing liposomes containing paclitaxel and hydroxychloroquine for primary and metastatic melanoma treatment via autophagy-dependent and independent pathways. J. Control. Release, 2018, 288, 148-160. doi: 10.1016/j.jconrel.2018.08.015 PMID: 30099017
  223. Alzahrani, B. The biology of toll-like receptor 9 and its role in cancer. Crit. Rev. Eukaryot. Gene Expr., 2020, 30(5), 457-474. doi: 10.1615/CritRevEukaryotGeneExpr.2020036214 PMID: 33389882
  224. Zhou, Z.; Lin, L.; An, Y.; Zhan, M.; Chen, Y.; Cai, M.; Zhu, X.; Lu, L.; Zhu, K. The combination immunotherapy of TLR9 agonist and OX40 agonist via intratumoural injection for hepatocellular carcinoma. J. Hepatocell. Carcinoma, 2021, 8, 529-543. doi: 10.2147/JHC.S301375 PMID: 34136421
  225. Ren, T.; Xu, L.; Jiao, S.; Wang, Y.; Cai, Y.; Liang, Y.; Zhou, Y.; Zhou, H.; Wen, Z. TLR9 signaling promotes tumor progression of human lung cancer cell in vivo. Pathol. Oncol. Res., 2009, 15(4), 623-630. doi: 10.1007/s12253-009-9162-0 PMID: 19319670
  226. Gao, C.; Qiao, T.; Zhang, B.; Yuan, S.; Zhuang, X.; Luo, Y. TLR9 signaling activation at different stages in colorectal cancer and NF-kappaB expression. OncoTargets Ther., 2018, 11, 5963-5971. doi: 10.2147/OTT.S174274 PMID: 30271180
  227. Luo, Q.; Zeng, L.; Tang, C.; Zhang, Z.; Chen, Y.; Zeng, C. TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-κB expression levels. Oncol. Lett., 2020, 20(4), 110. doi: 10.3892/ol.2020.11971 PMID: 32863923
  228. Vlad, C.; Dina, C.; Kubelac, P.; Vlad, D.; Pop, B.; Achimas Cadariu, P. Expression of toll-like receptors in ovarian cancer. J. BUON, 2018, 23(6), 1725-1731. PMID: 30610800
  229. Schleimann, M.H.; Kobberø, M.L.; Vibholm, L.K.; Kjær, K.; Giron, L.B.; Busman-Sahay, K.; Chan, C.N.; Nekorchuk, M.; Schmidt, M.; Wittig, B.; Damsgaard, T.E.; Ahlburg, P.; Hellfritzsch, M.B.; Zuwala, K.; Rothemejer, F.H.; Olesen, R.; Schommers, P.; Klein, F.; Dweep, H.; Kossenkov, A.; Nyengaard, J.R.; Estes, J.D.; Abdel-Mohsen, M.; Østergaard, L.; Tolstrup, M.; Søgaard, O.S.; Denton, P.W. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine, 2019, 45, 328-340. doi: 10.1016/j.ebiom.2019.07.005 PMID: 31300344
  230. Schmoll, H.J.; Wittig, B.; Arnold, D.; Riera-Knorrenschild, J.; Nitsche, D.; Kroening, H.; Mayer, F.; Andel, J.; Ziebermayr, R.; Scheithauer, W. Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: A randomised, double-blind, placebo-controlled trial. J. Cancer Res. Clin. Oncol., 2014, 140(9), 1615-1624. doi: 10.1007/s00432-014-1682-7 PMID: 24816725
  231. Weihrauch, M.R.; Richly, H.; von Bergwelt-Baildon, M.S.; Becker, H.J.; Schmidt, M.; Hacker, U.T.; Shimabukuro-Vornhagen, A.; Holtick, U.; Nokay, B.; Schroff, M.; Wittig, B.; Scheulen, M.E. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur. J. Cancer, 2015, 51(2), 146-156. doi: 10.1016/j.ejca.2014.11.002 PMID: 25480557
  232. Geboers, B.; Timmer, F.E.F.; Ruarus, A.H.; Pouw, J.E.E.; Schouten, E.A.C.; Bakker, J.; Puijk, R.S.; Nieuwenhuizen, S.; Dijkstra, M.; van den Tol, M.P.; de Vries, J.J.J.; Oprea-Lager, D.E. Menke-van der Houven van Oordt, C.W.; van der Vliet, H.J.; Wilmink, J.W.; Scheffer, H.J.; de Gruijl, T.D.; Meijerink, M.R. Irreversible electroporation and nivolumab combined with intratumoral administration of a toll-like receptor ligand, as a means of in vivo vaccination for metastatic pancreatic ductal adenocarcinoma (PANFIRE-III). A phase-I study protocol. Cancers, 2021, 13(15), 3902. doi: 10.3390/cancers13153902 PMID: 34359801
  233. Kennedy, E.; Coulter, E.; Halliwell, E.; Profitos-Peleja, N.; Walsby, E.; Clark, B.; Phillips, E.H.; Burley, T.A.; Mitchell, S.; Devereux, S.; Fegan, C.D.; Jones, C.I.; Johnston, R.; Chevassut, T.; Schulz, R.; Seiffert, M.; Agathanggelou, A.; Oldreive, C.; Davies, N.; Stankovic, T.; Liloglou, T.; Pepper, C.; Pepper, A.G.S. TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood, 2021, 137(22), 3064-3078. doi: 10.1182/blood.2020005964 PMID: 33512408
  234. Kim, Y.J.; Schiopu, E.; Dankó, K.; Mozaffar, T.; Chunduru, S.; Lees, K.; Goyal, N.A.; Sarazin, J.; Fiorentino, D.F.; Sarin, K.Y. A phase 2, double-blinded, placebo-controlled trial of toll-like receptor 7/8/9 antagonist, IMO-8400, in dermatomyositis. J. Am. Acad. Dermatol., 2021, 84(4), 1160-1162. doi: 10.1016/j.jaad.2020.07.122 PMID: 32781178
  235. Kundu, B.; Raychaudhuri, D.; Mukherjee, A.; Sinha, B.P.; Sarkar, D.; Bandopadhyay, P.; Pal, S.; Das, N.; Dey, D.; Ramarao, K.; Nagireddy, K.; Ganguly, D.; Talukdar, A. Systematic optimization of potent and orally bioavailable purine scaffold as a dual inhibitor of toll-like receptors 7 and 9. J. Med. Chem., 2021, 64(13), 9279-9301. doi: 10.1021/acs.jmedchem.1c00532 PMID: 34142551
  236. Mohamed, F.E.Z.; Jalan, R.; Minogue, S.; Andreola, F.; Habtesion, A.; Hall, A.; Winstanley, A.; Damink, S.O.; Davies, N.; Luong, T.V.; Dhillon, A.; Mookerjee, R.; Dhar, D.; Al-Jehani, R.M. Inhibition of TLR7 and TLR9 reduces human cholangiocarcinoma cell proliferation and tumor development. Dig. Dis. Sci., 2021, 67(5), 1806-1821. doi: 10.1007/s10620-021-06973-9 PMID: 33939146
  237. Talukdar, A.; Ganguly, D.; Roy, S.; Das, N.; Sarkar, D. Structural evolution and translational potential for agonists and antagonists of endosomal toll-like receptors. J. Med. Chem., 2021, 64(12), 8010-8041. doi: 10.1021/acs.jmedchem.1c00300 PMID: 34107682
  238. Jin, Y.; Zhuang, Y.; Dong, X.; Liu, M. Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev. Anticancer Ther., 2021, 21(8), 841-851. doi: 10.1080/14737140.2021.1915136 PMID: 33831324
  239. Karime, C.; Wang, J.; Woodhead, G.; Mody, K.; Hennemeyer, C.T.; Borad, M.J.; Mahadevan, D.; Chandana, S.R.; Babiker, H. Tilsotolimod: An investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin. Investig. Drugs, 2022, 31(1), 1-13. doi: 10.1080/13543784.2022.2019706 PMID: 34913781
  240. Zawit, M.; Swami, U.; Awada, H.; Arnouk, J.; Milhem, M.; Zakharia, Y. Current status of intralesional agents in treatment of malignant melanoma. Ann. Transl. Med., 2021, 9(12), 1038. doi: 10.21037/atm-21-491 PMID: 34277838
  241. Zhang, Z.; Kuo, J.C.; Yao, S.; Zhang, C.; Khan, H.; Lee, R.J. CpG oligodeoxynucleotides for anticancer monotherapy from preclinical stages to clinical trials. Pharmaceutics, 2021, 14(1), 73. doi: 10.3390/pharmaceutics14010073 PMID: 35056969
  242. Cheng, Y.; Lemke-Miltner, C.D.; Wongpattaraworakul, W.; Wang, Z.; Chan, C.H.F.; Salem, A.K.; Weiner, G.J.; Simons, A.L. In situ immunization of a TLR9 agonist virus-like particle enhances anti-PD1 therapy. J. Immunother. Cancer, 2020, 8(2), e000940. doi: 10.1136/jitc-2020-000940 PMID: 33060147
  243. Chuang, Y.C.; Tseng, J.C.; Huang, L.R.; Huang, C.M.; Huang, C.F.; Chuang, T.H. Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol., 2020, 11, 1075. doi: 10.3389/fimmu.2020.01075 PMID: 32547560
  244. Cohen, E.E.W.; Nabell, L.; Wong, D.J.; Day, T.; Daniels, G.A.; Milhem, M.; Deva, S.; Jameson, M.; Guntinas-Lichius, O.; Almubarak, M.; Strother, M.; Whitman, E.; Chisamore, M.; Obiozor, C.; Bagulho, T.; Gomez-Romo, J.; Guiducci, C.; Janssen, R.; Gamelin, E.; Algazi, A.P. Intralesional SD-101 in combination with pembrolizumab in anti-PD-1 treatment-naïve head and neck squamous cell carcinoma: Results from a multicenter, phase II trial. Clin. Cancer Res., 2022, 28(6), 1157-1166. doi: 10.1158/1078-0432.CCR-21-1411 PMID: 34965944
  245. Garon, E.B.; Spira, A.I.; Johnson, M.; Bazhenova, L.; Leach, J.; Cummings, A.L.; Candia, A.; Coffman, R.L.; Janatpour, M.J.; Janssen, R.; Gamelin, E.; Chow, L.Q.M. A phase Ib open-label, multicenter study of inhaled DV281, a TLR9 agonist, in combination with nivolumab in patients with advanced or metastatic non-small cell lung cancer. Clin. Cancer Res., 2021, 27(16), 4566-4573. doi: 10.1158/1078-0432.CCR-21-0263 PMID: 34108179
  246. Haymaker, C.; Johnson, D.H.; Murthy, R.; Bentebibel, S.E.; Uemura, M.I.; Hudgens, C.W.; Safa, H.; James, M.; Andtbacka, R.H.I.; Johnson, D.B.; Shaheen, M.; Davies, M.A.; Rahimian, S.; Chunduru, S.K.; Milton, D.R.; Tetzlaff, M.T.; Overwijk, W.W.; Hwu, P.; Gabrail, N.; Agrawal, S.; Doolittle, G.; Puzanov, I.; Markowitz, J.; Bernatchez, C.; Diab, A. Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov., 2021, 11(8), 1996-2013. doi: 10.1158/2159-8290.CD-20-1546 PMID: 33707233
  247. Kapp, K.; Volz, B.; Oswald, D.; Wittig, B.; Baumann, M.; Schmidt, M. Beneficial modulation of the tumor microenvironment and generation of anti-tumor responses by TLR9 agonist lefitolimod alone and in combination with checkpoint inhibitors. OncoImmunology, 2019, 8(12), e1659096. doi: 10.1080/2162402X.2019.1659096 PMID: 31741757
  248. Ribas, A.; Medina, T.; Kirkwood, J.M.; Zakharia, Y.; Gonzalez, R.; Davar, D.; Chmielowski, B.; Campbell, K.M.; Bao, R.; Kelley, H.; Morris, A.; Mauro, D.; Wooldridge, J.E.; Luke, J.J.; Weiner, G.J.; Krieg, A.M.; Milhem, M.M. Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov., 2021, 11(12), 2998-3007. doi: 10.1158/2159-8290.CD-21-0425 PMID: 34326162
  249. Sato-Kaneko, F.; Yao, S.; Ahmadi, A.; Zhang, S.S.; Hosoya, T.; Kaneda, M.M.; Varner, J.A.; Pu, M.; Messer, K.S.; Guiducci, C.; Coffman, R.L.; Kitaura, K.; Matsutani, T.; Suzuki, R.; Carson, D.A.; Hayashi, T.; Cohen, E.E. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight, 2017, 2(18), e93397. doi: 10.1172/jci.insight.93397 PMID: 28931759
  250. Li, T.; Hua, C.; Yue, W.; Wu, J.; Lv, X.; Wei, Q.; Zhu, S.; Zang, G.; Cui, J.; Liu, Y.J.; Chen, J. Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade. Pharmacol. Res., 2020, 161, 105293. doi: 10.1016/j.phrs.2020.105293 PMID: 33176206
  251. Reilley, M.J.; Morrow, B.; Ager, C.R.; Liu, A.; Hong, D.S.; Curran, M.A. TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J. Immunother. Cancer, 2019, 7(1), 323. doi: 10.1186/s40425-019-0811-x PMID: 31771649
  252. Wang, D.; Jiang, W.; Zhu, F.; Mao, X.; Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol., 2018, 53(3), 1193-1203. doi: 10.3892/ijo.2018.4456 PMID: 29956749
  253. Calles, A.; Aguado, G.; Sandoval, C.; Álvarez, R. The role of immunotherapy in small cell lung cancer. Clin. Transl. Oncol., 2019, 21(8), 961-976. doi: 10.1007/s12094-018-02011-9 PMID: 30637710
  254. Schmidt, M.; Hagner, N.; Marco, A.; König-Merediz, S.A.; Schroff, M.; Wittig, B. Design and structural requirements of the potent and safe TLR-9 agonistic immunomodulator MGN1703. Nucleic Acid Ther., 2015, 25(3), 130-140. doi: 10.1089/nat.2015.0533 PMID: 25826686
  255. Karapetyan, L.; Luke, J.J.; Davar, D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther., 2020, 13, 10039-10060. doi: 10.2147/OTT.S247050 PMID: 33116588
  256. Thomas, M.; Ponce-Aix, S.; Navarro, A.; Riera-Knorrenschild, J.; Schmidt, M.; Wiegert, E.; Kapp, K.; Wittig, B.; Mauri, C.; Dómine Gómez, M.; Kollmeier, J.; Sadjadian, P.; Fröhling, K.P.; Huber, R.M.; Wolf, M.; Pall, G.; Surmont, V.; Bosquee, L.; Germonpré, P.; Brückl, W.; Grah, C.; Herzmann, C.; Leistner, R.; Meyer, A.; Müller, L.; Schmalz, O.; Scholz, C.; Schröder, M.; Serke, M.; Wesseler, C.; Brandts, C.; Kopp, H-G.; Blau, W.; Griesinger, F.; Campelo, M.R.G.; Garcia, Y.G.; Perez, J.M.T. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: Results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann. Oncol., 2018, 29(10), 2076-2084. doi: 10.1093/annonc/mdy326 PMID: 30137193
  257. Moreira, D.; Zhang, Q.; Hossain, D.M.; Nechaev, S.; Li, H.; Kowolik, C.M.; D'Apuzzo, M.; Forman, S.; Jones, J.; Pal, S.K.; Kortylewski, M. TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget, 2015, 6(19), 17302-17313. doi: 10.18632/oncotarget.4029 PMID: 26046794
  258. Qian, J.; Meng, H.; Lv, B.; Wang, J.; Lu, Y.; Li, W.; Zhao, S. TLR9 expression is associated with PD-L1 expression and indicates a poor prognosis in patients with peripheral T-cell lymphomas. Pathol. Res. Pract., 2020, 216(3), 152703. doi: 10.1016/j.prp.2019.152703 PMID: 31879046
  259. Zhang, Y.; Wang, Q.; Ma, A.; Li, Y.; Li, R.; Wang, Y. Functional expression of TLR9 in esophageal cancer. Oncol. Rep., 2014, 31(5), 2298-2304. doi: 10.3892/or.2014.3095 PMID: 24647486
  260. Di, J.M.; Pang, J.; Sun, Q.P.; Zhang, Y.; Fang, Y.Q.; Liu, X.P.; Zhou, J.H.; Ruan, X.X.; Gao, X. Toll-like receptor 9 agonists up-regulates the expression of cyclooxygenase-2 via activation of NF-kappaB in prostate cancer cells. Mol. Biol. Rep., 2010, 37(4), 1849-1855. doi: 10.1007/s11033-009-9620-5 PMID: 19618291
  261. Kuznik, A.; Bencina, M.; Svajger, U.; Jeras, M.; Rozman, B.; Jerala, R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol., 2011, 186(8), 4794-4804. doi: 10.4049/jimmunol.1000702 PMID: 21398612
  262. Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166. doi: 10.1038/s41584-020-0372-x PMID: 32034323
  263. Di, J.M.; Pang, J.; Pu, X.Y.; Zhang, Y.; Liu, X.P.; Fang, Y.Q.; Ruan, X.X.; Gao, X. Toll-like receptor 9 agonists promote IL-8 and TGF-beta1 production via activation of nuclear factor kappaB in PC-3 cells. Cancer Genet. Cytogenet., 2009, 192(2), 60-67. doi: 10.1016/j.cancergencyto.2009.03.006 PMID: 19596255
  264. Zhang, Y.; Li, Y.; Li, Y.; Li, R.; Ma, Y.; Wang, H.; Wang, Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol. Med. Rep., 2015, 11(2), 1366-1371. doi: 10.3892/mmr.2014.2839 PMID: 25369757
  265. Mohamed, F.E.; Al-Jehani, R.M.; Minogue, S.S.; Andreola, F.; Winstanley, A.; Olde Damink, S.W.; Habtesion, A.; Malagó, M.; Davies, N.; Luong, T.V.; Dhillon, A.P.; Mookerjee, R.P.; Dhar, D.K.; Jalan, R. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int., 2015, 35(3), 1063-1076. doi: 10.1111/liv.12626 PMID: 24990399
  266. Sandholm, J.; Tuomela, J.; Kauppila, J.H.; Harris, K.W.; Graves, D.; Selander, K.S. Hypoxia regulates toll-like receptor-9 expression and invasive function in human brain cancer cells in vitro. Oncol. Lett., 2014, 8(1), 266-274. doi: 10.3892/ol.2014.2095 PMID: 24959259
  267. Amésquita, L.; Cruz-Briceño, M.N.; Prieto, Z. Damage to human lymphocyte DNA from chloroquine effect. Rev. Peru. Med. Exp. Salud Publica, 2018, 35(3), 471-475. doi: 10.17843/rpmesp.2018.353.3166 PMID: 30517508
  268. Kwakye-Berko, F.; Meshnick, S.R. Binding of chloroquine to DNA. Mol. Biochem. Parasitol., 1989, 35(1), 51-55. doi: 10.1016/0166-6851(89)90141-2 PMID: 2761572
  269. Sternglanz, H.; Yielding, K.L.; Pruitt, K.M. Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5′-phosphate and other nucleotides. Mol. Pharmacol., 1969, 5(4), 376-381. PMID: 5803387
  270. Chen, Y.; Wang, T.; Xie, P.; Song, Y.; Wang, J.; Cai, Z. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine. Anal. Chim. Acta, 2021, 1184, 339011. doi: 10.1016/j.aca.2021.339011 PMID: 34625248
  271. King, M.A.; Ganley, I.G.; Flemington, V. Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene, 2016, 35(34), 4518-4528. doi: 10.1038/onc.2015.511 PMID: 26853465
  272. Cotton, D.W.; Sutorius, A.H. Inhibiting effect of some antimalarial substances on glucose-6-phosphate dehydrogenase. Nature, 1971, 233(5316), 197. doi: 10.1038/233197a0 PMID: 4939179
  273. Choi, M.M.; Kim, E.A.; Choi, S.Y.; Kim, T.U.; Cho, S.W.; Yang, S.J. Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine. J. Biochem. Mol. Biol., 2007, 40(6), 1077-1082. doi: 10.5483/BMBRep.2007.40.6.1077 PMID: 18047806
  274. Jarzyna, R.; Kiersztan, A.; Lisowa, O.; Bryła, J. The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur. J. Pharmacol., 2001, 428(3), 381-388. doi: 10.1016/S0014-2999(01)01221-3 PMID: 11689198
  275. Peterse, E.F.P.; Niessen, B.; Addie, R.D.; de Jong, Y.; Cleven, A.H.G.; Kruisselbrink, A.B.; van den Akker, B.E.W.M.; Molenaar, R.J.; Cleton-Jansen, A.M.; Bovée, J.V.M.G. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. Br. J. Cancer, 2018, 118(8), 1074-1083. doi: 10.1038/s41416-018-0050-9 PMID: 29576625
  276. Liu-Kreyche, P.; Shen, H.; Marino, A.M.; Iyer, R.A.; Humphreys, W.G.; Lai, Y. Lysosomal P-gp-MDR1 confers drug resistance of brentuximab vedotin and its cytotoxic payload monomethyl auristatin E in tumor cells. Front. Pharmacol., 2019, 10, 749. doi: 10.3389/fphar.2019.00749 PMID: 31379564
  277. Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29. doi: 10.1016/j.drup.2016.05.001 PMID: 27449595
  278. Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother., 2018, 100, 335-348. doi: 10.1016/j.biopha.2018.02.038 PMID: 29453043
  279. Rijpma, S.R.; van den Heuvel, J.J.; van der Velden, M.; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar. J., 2014, 13(1), 359. doi: 10.1186/1475-2875-13-359 PMID: 25218605
  280. Vezmar, M.; Georges, E. Direct binding of chloroquine to the multidrug resistance protein (MRP): Possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem. Pharmacol., 1998, 56(6), 733-742. doi: 10.1016/S0006-2952(98)00217-2 PMID: 9751078
  281. Gao, M.; Xu, Y.; Qiu, L. Sensitization of multidrug-resistant malignant cells by liposomes co-encapsulating doxorubicin and chloroquine through autophagic inhibition. J. Liposome Res., 2017, 27(2), 151-160. doi: 10.1080/08982104.2016.1185731 PMID: 27250110
  282. Kim, J.H.; Choi, A.R.; Kim, Y.K.; Yoon, S. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition. Biochem. Biophys. Res. Commun., 2013, 441(3), 655-660. doi: 10.1016/j.bbrc.2013.10.095 PMID: 24284282
  283. Telbisz, Á.; Ambrus, C.; Mózner, O.; Szabó, E.; Várady, G.; Bakos, É.; Sarkadi, B.; Özvegy-Laczka, C. Interactions of potential anti-COVID-19 compounds with multispecific ABC and OATP drug transporters. Pharmaceutics, 2021, 13(1), 81. doi: 10.3390/pharmaceutics13010081 PMID: 33435273
  284. Vezmar, M.; Georges, E. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem. Pharmacol., 2000, 59(10), 1245-1252. doi: 10.1016/S0006-2952(00)00270-7 PMID: 10736425
  285. Wang, F.; Zhang, Z.; Leung, W.T.; Chen, J.; Yi, J.; Ying, C.; Yuan, M.; Wang, M.; Zhang, N.; Qiu, X.; Wang, L.; Wei, H. Hydroxychloroquine reverses the drug resistance of leukemic K562/ADM cells by inhibiting autophagy. Mol. Med. Rep., 2019, 20(4), 3883-3892. doi: 10.3892/mmr.2019.10621 PMID: 31485616
  286. Yin, W.; Xu, J.; Mao, Y. Synergistic effects of autophagy inhibitors combined with cisplatin against cisplatin-resistant nasopharyngeal cancer cells. Biochem. Cell Biol., 2021, 99(3), 322-329. doi: 10.1139/bcb-2020-0283 PMID: 34038188
  287. Irvine, D.J.; Dane, E.L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol., 2020, 20(5), 321-334. doi: 10.1038/s41577-019-0269-6 PMID: 32005979
  288. Liu, L.; Ren, J.; He, Z.; Men, K.; Mao, Y.; Ye, T.; Chen, H.; Li, L.; Xu, B.; Wei, Y.; Wei, X. Cholesterol-modified hydroxychloroquine-loaded nanocarriers in bleomycin-induced pulmonary fibrosis. Sci. Rep., 2017, 7(1), 10737. doi: 10.1038/s41598-017-11450-3 PMID: 28878315
  289. Gao, A.; Hu, X.L.; Saeed, M.; Chen, B.F.; Li, Y.P.; Yu, H.J. Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol. Sin., 2019, 40(9), 1129-1137. doi: 10.1038/s41401-019-0281-1 PMID: 31371782
  290. Kotcherlakota, R.; Rahaman, S.T.; Patra, C.R. Nanomedicine for cancer therapy using autophagy: An overview. Curr. Top. Med. Chem., 2018, 18(30), 2599-2613. doi: 10.2174/1568026619666181224104838 PMID: 30582477
  291. Jing, M.; Li, Y.; Wang, M.; Zhang, H.; Wei, P.; Zhou, Y.; Ishimwe, N.; Huang, X.; Wang, L.; Wen, L.; Wang, W.; Zhang, Y. Photoresponsive PAMAM-assembled nanocarrier loaded with autophagy inhibitor for synergistic cancer therapy. Small, 2021, 17(38), e2102295. doi: 10.1002/smll.202102295 PMID: 34365730
  292. Stevens, D.M.; Crist, R.M.; Stern, S.T. Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules, 2020, 26(1), 175. doi: 10.3390/molecules26010175 PMID: 33396545
  293. Allemailem, K.S.; Almatroudi, A.; Alrumaihi, F.; Almatroodi, S.A.; Alkurbi, M.O.; Basfar, G.T.; Rahmani, A.H.; Khan, A.A. Novel approaches of dysregulating lysosome functions in cancer cells by specific drugs and its nanoformulations: A smart approach of modern therapeutics. Int. J. Nanomedicine, 2021, 16, 5065-5098. doi: 10.2147/IJN.S321343 PMID: 34345172
  294. Tavakol, S.; Ashrafizadeh, M.; Deng, S.; Azarian, M.; Abdoli, A.; Motavaf, M.; Poormoghadam, D.; Khanbabaei, H.; Afshar, E.G.; Mandegary, A.; Pardakhty, A.; Yap, C.T.; Mohammadinejad, R.; Kumar, A.P. Autophagy modulators: Mechanistic aspects and drug delivery systems. Biomolecules, 2019, 9(10), 530. doi: 10.3390/biom9100530 PMID: 31557936
  295. Yang, B.; Shi, J. Developing new cancer nanomedicines by repurposing old drugs. Angew. Chem. Int. Ed. Engl., 2020, 59(49), 21829-21838. doi: 10.1002/anie.202004317 PMID: 32270570
  296. Yang, Y.; Guo, T.; Xu, J.; Xiong, Y.; Cui, X.; Ke, Y.; Wang, C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int. J. Biol. Macromol., 2021, 189, 577-589. doi: 10.1016/j.ijbiomac.2021.08.155 PMID: 34450149
  297. Min, X.; Fang, M.; Huang, Z.; Liu, Y.; Huang, Y.; Wen, R.; Qian, T.; Wu, X. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci. Rep., 2015, 5(1), 12964. doi: 10.1038/srep12964 PMID: 26261089
  298. Pelt, J.; Busatto, S.; Ferrari, M.; Thompson, E.A.; Mody, K.; Wolfram, J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther., 2018, 191, 43-49. doi: 10.1016/j.pharmthera.2018.06.007 PMID: 29932886
  299. Wolfram, J.; Nizzero, S.; Liu, H.; Li, F.; Zhang, G.; Li, Z.; Shen, H.; Blanco, E.; Ferrari, M. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci. Rep., 2017, 7(1), 13738. doi: 10.1038/s41598-017-14221-2 PMID: 29062065
  300. Dos Reis, S.B.; de Oliveira Silva, J.; Garcia-Fossa, F.; Leite, E.A.; Malachias, A.; Pound-Lana, G.; Mosqueira, V.C.F.; Oliveira, M.C.; de Barros, A.L.B.; de Jesus, M.B. Mechanistic insights into the intracellular release of doxorubicin from pH-sensitive liposomes. Biomed. Pharmacother., 2021, 134, 110952. doi: 10.1016/j.biopha.2020.110952 PMID: 33348307
  301. Panagiotaki, K.N.; Sideratou, Z.; Vlahopoulos, S.A.; Paravatou-Petsotas, M.; Zachariadis, M.; Khoury, N.; Zoumpourlis, V.; Tsiourvas, D. A triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals, 2017, 10(4), 91. doi: 10.3390/ph10040091 PMID: 29160846
  302. Sun, J.H.; Ye, C.; Bai, E.H.; Zhang, L.L.; Huo, S.J.; Yu, H.H.; Xiang, S.Y.; Yu, S.Q. Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology, 2019, 30(8), 085101. doi: 10.1088/1361-6528/aaf51b PMID: 30523865
  303. Shao, M.; Zhu, W.; Lv, X.; Yang, Q.; Liu, X.; Xie, Y.; Tang, P.; Sun, L. Encapsulation of chloroquine and doxorubicin by MPEG-PLA to enhance anticancer effects by lysosomes inhibition in ovarian cancer. Int. J. Nanomedicine, 2018, 13, 8231-8245. doi: 10.2147/IJN.S174300 PMID: 30584297
  304. Xu, S.; Zhong, Y.; Nie, C.; Pan, Y.; Adeli, M.; Haag, R. Co-delivery of doxorubicin and chloroquine by polyglycerol functionalized MoS2 nanosheets for efficient multidrug-resistant cancer therapy. Macromol. Biosci., 2021, 21(11), e2100233. doi: 10.1002/mabi.202100233 PMID: 34411417
  305. Matsumoto, S.; Nakata, K.; Sagara, A.; Guan, W.; Ikenaga, N.; Ohuchida, K.; Nakamura, M. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells. Oncol. Lett., 2021, 22(2), 633. doi: 10.3892/ol.2021.12894 PMID: 34267825
  306. Maghsoudnia, N.; Eftekhari, R.B.; Sohi, A.N.; Dorkoosh, F.A. Chloroquine assisted delivery of microRNA Mimic Let-7b to NSCLC cell line by PAMAM (G5) - HA nano-carrier. Curr. Drug Deliv., 2021, 18(1), 31-43. doi: 10.2174/1567201817666200804105017 PMID: 32753014
  307. Chen, M.; Yang, D.; Sun, Y.; Liu, T.; Wang, W.; Fu, J.; Wang, Q.; Bai, X.; Quan, G.; Pan, X.; Wu, C. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy via autophagy regulation strategy. ACS Nano, 2021, 15(2), 3387-3401. doi: 10.1021/acsnano.0c10396 PMID: 33576607
  308. González-Pastor, R.; Lancelot, A.; Morcuende-Ventura, V.; San Anselmo, M.; Sierra, T.; Serrano, J.L.; Martin-Duque, P. Combination chemotherapy with cisplatin and chloroquine: Effect of encapsulation in micelles formed by self-assembling hybrid dendritic-linear-dendritic block copolymers. Int. J. Mol. Sci., 2021, 22(10), 5223. doi: 10.3390/ijms22105223 PMID: 34069278
  309. Arya, B.D.; Mittal, S.; Joshi, P.; Pandey, A.K.; Ramirez-Vick, J.E.; Singh, S.P. Graphene oxide-chloroquine nanoconjugate induce necroptotic death in A549 cancer cells through autophagy modulation. Nanomedicine, 2018, 13(18), 2261-2282. doi: 10.2217/nnm-2018-0086 PMID: 30284495
  310. Ji, Y.; Liu, X.; Li, J.; Xie, X.; Huang, M.; Jiang, J.; Liao, Y.P.; Donahue, T.; Meng, H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat. Commun., 2020, 11(1), 4249. doi: 10.1038/s41467-020-17996-7 PMID: 32843618
  311. Zarei, H.; Kazemi Oskuee, R.; Hanafi-Bojd, M.Y.; Gholami, L.; Ansari, L.; Malaekeh-Nikouei, B. Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles. Pharm. Dev. Technol., 2019, 24(1), 127-132. doi: 10.1080/10837450.2018.1431930 PMID: 29357725

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023