Оценка эффективности технологических мероприятий для управления риском здоровью населения при воздействии атмосферных выбросов многотопливных теплоэлектроцентралей

Обложка


Цитировать

Полный текст

Аннотация

Цель исследования. Дать оценку эффективности технологических мероприятий для управления риском здоровью населения при воздействии атмосферных выбросов многотопливных теплоцентралей (ТЭЦ).

Методы. Исследование выполнено на территории Кировской области в зоне влияния атмосферных выбросов ТЭЦ-4, модернизация которой включала внедрение низкотемпературного вихревого (НТВ) сжигания топлива, и ТЭЦ-3, в модернизацию которой входил запуск в эксплуатацию парогазовой установки для увеличения выработки электрической и тепловой энергии.

Исследование включало подготовку обучающей выборки для искусственной нейронной сети; моделирование рассеяния выбросов изучаемых ТЭЦ с расчётом приземных концентраций и оценкой канцерогенного и неканцерогенного рисков здоровью населения, а также относительного риска смертности, обращений и госпитализаций согласно методическим указаниям ВОЗ по качеству атмосферного воздуха. Для предприятий теплоэнергетики были построены прогнозные сценарии, включающие исходное состояние, модернизацию с помощью технологических и санитарно-технических мероприятий, изменения структуры топливного баланса.

Результаты. При использовании НТВ-технологии в сочетании с модернизацией системы пылегазоочистки прогнозируется статистически значимое (p <0,001) снижение величины показателя канцерогенного риска в среднем на 80,67%, неканцерогенного риска — на 78,84%, относительных рисков смертности и обращений в медицинские организации — более чем на 80%. Применение газотурбинной установки позволило увеличить продукцию электрической энергии на 72,23%, тепловой — на 4,89%, статистически значимо (p <0,001) снизить уровень канцерогенного риска на 44–60%, неканцерогенного риска — на 35–47%, относительных рисков смертности, обращений в медицинские организации и госпитализаций — на 33–64%.

Заключение. Применение для модернизации многотопливных ТЭЦ наилучших доступных технологий, включающих современные отечественные инженерно-технические разработки, позволяет при увеличении выработки электрической и тепловой энергии значительно снизить уровень риска здоровью населения, сохранив преимущество использования как твёрдого, так и газообразного топлива.

Полный текст

ВВЕДЕНИЕ

Согласно Энергетической стратегии России на периоды до 2024 года и до 2035 года одними из приоритетных направлений являются уменьшение отрицательного воздействия деятельности организаций топливно-энергетического комплекса на окружающую среду в условиях структурной диверсификации источников энергии, увеличения доли твёрдого и газообразного топлива на внутреннем потребительском рынке и повышения спроса на электрическую и тепловую энергию. Решение данной задачи намечено осуществить путём разработки и внедрения перспективных, экологически чистых технологий, повышения эффективности выработки продукции топливо-энергетического комплекса страны. При реализации данной стратегии существенный интерес могут представлять многотопливные теплоэнергетические комплексы, оборудование которых позволяет одновременно использовать твёрдое и газообразное топливо в различных соотношениях [1]. Обоснованность принятия управленческих решений по изменению топливного баланса, внедрению инновационных технологий в обязательном порядке должна сопровождаться оценкой риска здоровью населения и мероприятиями по снижению рисков до допустимого уровня [2, 3]. В связи с этим актуальное значение приобретают эколого-гигиенические исследования в районах размещения действующих многотопливных теплоэлектроцентралей (ТЭЦ), на которых в рамках реализации стратегических задач проводятся мероприятия по модернизации производства тепловой и электрической энергии [4–7].

Цель исследования. Дать оценку эффективности технологических мероприятий для управления риском здоровью населения при воздействии атмосферных выбросов многотопливных теплоцентралей.

МАТЕРИАЛЫ И МЕТОДЫ

Исследование выполнено на территории г. Кирова и г. Кирово-Чепецка Кировской области, в зоне влияния атмосферных выбросов городских многотопливных ТЭЦ-4 и ТЭЦ-3. На Кировской ТЭЦ-4 в период с 2008 по 2009 гг. в рамках отраслевой программы модернизации были выполнены работы по реконструкции энергетического котла БКЗ-210-140Ф путём внедрения низкотемпературной вихревой (НТВ) технологии совместного сжигания каменного угля, торфа, природного газа и мазута. Цели модернизации: продление ресурса оборудования, обеспечение номинальной нагрузки котла на торфе и повышение максимальной нагрузки при работе на угле и газе с высокой эффективностью сжигания топлива и низкими вредными выбросами, отказ от подсветки газом или мазутом при работе на торфе и угле.

С целью увеличения продукции электрической и тепловой энергии, улучшения экономических и экологических показателей в период 2010–2014 гг. в Кирово-Чепецке реализован крупный проект модернизации предприятия теплоэнергетики «Реконструкция Кировской ТЭЦ-3 с применением ПГУ» (ПГУ — парогазовая установка). Модернизация ТЭЦ включала выведение из эксплуатации части устаревшего оборудования и постройку парогазового энергоблока с градирней вентиляторного типа.

Первичные данные о выбросах изучаемыми предприятиями в атмосферный воздух твёрдых частиц, диоксида серы, оксида углерода и оксидов азота получены из ежегодных материалов официальной государственной статистической отчётности по форме «№2-ТП (воздух)». Расчёт приземных концентраций компонентов атмосферных выбросов выполнен в программе AERMOD View (Lakes Environmental Software, Канада) с использованием цифровых моделей рельефа и почасовых метеоданных в зоне влияния выбросов предприятий. Штатными средствами программы AERMOD View в границах селитебных зон, находящихся на территории влияния атмосферных выбросов ТЭЦ, были построены рецепторные сетки и получены поля концентраций по каждому загрязнителю в составе атмосферных выбросов с шагом от 200 до 400 м.

Полученные данные о массе выбросов в атмосферу и приземных концентрациях компонентов атмосферных выбросов изучаемых ТЭЦ в рецепторных точках городских селитебных зон стали обучающей выборкой для нейросетевых моделей в составе специализированного программного обеспечения — информационной системы оценки и прогнозирования риска здоровью населения в зоне влияния атмосферных выбросов многотопливных ТЭЦ «ЭкоРиск — ТЭЦ» (Свидетельство о государственной регистрации программы для ЭВМ № 2920666855 от 16.12.2020 г.). С помощью данной программы для предприятий теплоэнергетики был выполнен расчёт эмиссии в атмосферу и приземных концентраций твёрдых частиц, диоксида серы, оксида углерода и оксидов азота, а также расчёт риска здоровью для прогнозных сценариев работы ТЭЦ. Для ТЭЦ-4 рассматривали следующие прогнозные сценарии при выработке электрической энергии 1400 млн кВт·ч, тепловой энергии — 2500 тыс. Гкал:

1) состояние до модернизации;

2) переход всех энергетических котлов на НТВ-технологию сжигания топлива;

3) переход всех энергетических котлов на НТВ-технологию и модернизация системы пылегазоочистки (повышение эффективности до 99%).

Учитывая, что в результате модернизации ТЭЦ-3 была существенно увеличена выработка электроэнергии, для ТЭЦ-3 были созданы следующие сценарии:

1) состояние до модернизации: выработка электрической энергии — 720 млн кВт·ч, тепловой энергии — 1300 тыс. Гкал;

2) состояние до модернизации: годовая выработка электрической и тепловой энергии увеличена до 1250 млн кВт·ч и 1400 тыс. Гкал;

3) оборудование ТЭЦ модернизировано, состоит из парогазового энергоблока установленной электрической мощностью 236 МВт, тепловой мощностью 106 тыс. Гкал/ч и паросилового энергоблока тепловой мощностью 400 тыс. Гкал/ч, годовая выработка электрической и тепловой энергии увеличена до 1250 млн кВт·ч и 1400 тыс. Гкал.

Оценка риска здоровью населения при воздействии атмосферных выбросов изучаемых предприятий теплоэнергетики проведена согласно P 2.1.10.1920-04 «Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду». Количественная оценка канцерогенной опасности выполнена путём расчёта суммарного индивидуального канцерогенного риска (ICR), неканцерогенной опасности — с помощью индекса опасности для острого (HIa) и хронического (HI) ингаляционного действия. Расчёт относительного риска (ОР) смертности, обращений за медицинской помощью и госпитализаций при воздействии компонентов атмосферных выбросов изучаемых ТЭЦ осуществлён согласно методическим рекомендациям ВОЗ по качеству атмосферного воздуха [8].

Статистическая обработка результатов исследования выполнена с помощью программных пакетов Microsoft Excel и Statistica 10, включает методы описательной статистики и статистического анализа. Распределение количественных данных оценивали с помощью критерия Шапиро–Уилка. Все включённые в исследование количественные данные имели распределение, близкое к нормальному, и представлены в виде 95% доверительных интервалов (95% ДИ) средней арифметической. Статистическую значимость различий количественных данных оценивали при помощи однофакторного дисперсионного анализа (ANOVA) с апостериорными сравнениями по критерию Ньюмена–Кейлса. В качестве критического уровня статистической значимости (p) выбран уровень p <0,05 [9].

РЕЗУЛЬТАТЫ

При переводе всех котлоагрегатов ТЭЦ-4 на НТВ-технологию совместного сжигания топлива без модернизации системы пылегазоочистки прогнозируется статистически значимое (p <0,001) снижение величины показателя канцерогенного риска в среднем на 17,7%, неканцерогенного риска — на 13,98%. Статистически значимо наибольший эффект (p <0,001) отмечен при доле твёрдого топлива в топливном балансе ТЭЦ от 10 до 50%: в данных условиях уровень канцерогенного риска снижается на 13,17 — до 28,22%, уровень неканцерогенной опасности при хроническом ингаляционном воздействии — до 20,0%. Относительно меньший эффект от модернизации наблюдается в условиях значительного преобладания твёрдого топлива в топливном балансе (90% и более): отмечено снижение уровня канцерогенного риска на 11,68 — до 19,2%, уровня неканцерогенного риска при хроническом ингаляционном воздействии на 6,0 — до 10,0%.

Лучшие статистически значимые (p <0,001) результаты по снижению риска здоровью населения при любых соотношениях твёрдого и газообразного топлива в топливном балансе показала модель, в которой НТВ-сжигание сочетается с модернизацией системы пылегазоочистки (путём применением электрофильтров с эффективностью более 99%). При внедрении НТВ-технологии в сочетании с высокоэффективными электрофильтрами прогнозируется статистически значимое снижение величины показателя канцерогенного риска в среднем на 80,67%, неканцерогенного риска — на 78,84%. Согласно расчётным данным, при внедрении НТВ-технологии уровень неканцерогенного риска при остром ингаляционном воздействии (HIа) сокращается на 4–38%, при сочетании модернизации котлоагрегатов и системы пылегазоочистки — на 57–89% в зависимости от структуры топливного баланса (табл. 1).

 

Таблица 1. Сравнительная оценка канцерогенного и неканцерогенного риска здоровью населения при воздействии атмосферных выбросов ТЭЦ-4, 95% ДИ / Table 1. Comparative assessment of carcinogenic and non-carcinogenic risk to public health of exposure to atmospheric emissions of CHP-4, 95% CI

Доля твердого топлива, %

The percentage of solid fuel in the fuel balance, %

Модели сценариев работы ТЭЦ-4 | Models of CHP-4 operation scenarios

Период до внедрения технологии низкотемпературного вихревого сжигания

The period before the implementation of low-temperature vortex technology

Применение технологии низкотемпературного вихревого сжигания

In the conditions of application of low-temperature vortex technology

Технология низкотемпературного вихревого сжигания + модернизация системы пылегазоочистки

In the conditions of application of low-temperature vortex technology and modernization of the exhaust gas purification system

 

Индивидуальный канцерогенный риск для населения, ICR

Individual carcinogenic risk for population, ICR

 

взрослого

adults

детского

children

взрослого

adults

детского

children

взрослого

adults

детского

children

10

1,36×10–6–1,53×10–6

6,33×10–7–7,13×10–7

1,09×10–6–1,24×10–6

5,11×10–7–5,80×10–7

1,83×10–7–2,06×10–7

8,56×10–8–9,63×10–8

50

3,63×10–6–4,12×10–6

1,70×10–6–1,92×10–6

3,25×10–6–3,69×10–6

1,52×10–7–1,72×10–7

5,43×10–7–6,11×10–7

2,53×10–7–2,85×10–7

90

6,15×10–6–6,95×10–6

2,87×10–6–3,24×10–6

5,42×10–6–6,16×10–6

2,53×10–6–2,87×10–6

9,07×10–6–1,02×10–6

4,23×10–7–4,76×10–7

 

Неканцерогенный риск (индекс опасности) для ингаляционного воздействия, HI

Non-carcinogenic risk (hazard index) for inhalation exposure, HI

 

острого

acute

хронического

chronic

острого

acute

хронического

chronic

острого

acute

хронического

chronic

10

0,62–0,66

0,29–0,30

0,41– 0,43

0,22–0,25

0,19–0,21

0,06–0,07

50

0,94–1,00

0,72–0,74

0,71– 0,75

0,61–0,63

0,24–0,26

0,13–0,15

90

1,22–1,30

1,10–1,14

1,02–1,09

1,01–1,04

0,28–0,31

0,20–0,23

Примечание: уровень статистической значимости p <0,001.

Note: p <0.001 statistical significance level.

 

Расчётная динамика показателей ОР представлена следующими значениями: при моделировании влияния модернизации топочного процесса котлоагрегата показатель годовой смертности от общих причин снизился на 21,15%, при модернизации котлоагрегата и системы пылегазоочистки — на 82,24%; годовая смертность от болезней системы кровообращения (БСК) снизилась на 14,19 и 80,54% соответственно; годовая смертность от болезней органов дыхания (БОД) — на 17,46 и 84,39%; годовая смертность по причине рака лёгких — на 16,0 и 86,05%. Кроме того, отмечается отрицательная динамика аналогичных суточных показателей: суточной смертности от общих причин — на 34,53 и 54,64% соответственно; суточной смертности от БСК — на 5,02 и 43,10%; суточной смертности от БОД — на 22,27 и 55,61%; суточной смертности от острых форм БСК — на 8,33 и 54,17%; суточной обращаемости за медицинской помощью по поводу БСК — на 20,73 и 84,41%, по причине бронхиальной астмы — на 21,09 и 25,93% (табл. 2).

 

Таблица 2. Показатели относительного риска смертности, обращений за медицинской помощью и госпитализаций при воздействии атмосферных выбросов ТЭЦ-4, 95% ДИ / Table 2. Indicators of the relative risk of mortality, medical treatment, and hospitalization of exposure to atmospheric emissions of CHP-4, 95% CI

Показатели

Relative risk indicators

Модели сценариев работы ТЭЦ-4 | Models of CHP-4 operation scenarios

Период до внедрения технологии низкотемпературного вихревого сжигания

The period before the implementation of low-temperature vortex technology

Применение технологии низкотемпературного вихревого сжигания

In the conditions of application of low-temperature vortex technology

Технология низкотемпературного вихревого сжигания + модернизация системы пылегазоочистки

In the conditions of application of low-temperature vortex technology and modernization of the exhaust gas purification system

Годовые показатели относительного риска | Annual relative risk indicators

Смертность от общих причин

Non-accidental mortality

1,009–1,0200

1,007–1,016

1,001–1,004

Смертность от болезней системы кровообращения

Circulatory mortality

1,003–1,031

1,002–1,026

1,001–1,006

Смертность от болезней органов дыхания

Non-malignant respiratory mortality

1,017–1,057

1,014–1,047

1,003–1,009

Смертность от рака лёгких

Lung cancer mortality

1,011–1,034

1,009–1,030

1,002–1,005

Суточные показатели относительного риска | Daily indicators of relative risk

Смертность от общих причин

Non-accidental mortality

1,024–1,059

1,025–1,038

1,017–1,027

Смертность от болезней системы кровообращения

Circulatory mortality

1,032–1,107

1,029–1,101

1,013–1,061

Смертность от болезней органов дыхания

Non-malignant respiratory mortality

1,017–1,087

1,015–1,075

1,009–1,040

Смертность от острых форм болезней системы кровообращения

Myocardial infarction and stroke mortality

1,010–1,074

1,009–1,068

1,006–1,033

Обращения за медицинской помощью по причине болезней системы кровообращения

Daily hospital admissions for circulatory diseases

1,003–1,029

1,002–1,023

1,000–1,004

Обращения за медицинской помощью по причине бронхиальной астмы

Daily hospital admissions for asthma

1,012–1,081

1,007–1,068

1,006–1,066

 

При сравнении с периодом до модернизации ТЭЦ выявлено, что запуск газотурбинной установки позволил статистически значимо (p <0,001) снизить уровень канцерогенного риска на 47–60%, неканцерогенного риска при остром ингаляционном воздействии — на 35–42%, при хроническом ингаляционном воздействии — на 43–47%. При сравнении со сценарием повышения мощностей ТЭЦ без её модернизации установлено, что применение газотурбинной установки позволило статистически значимо (p <0,001) снизить уровень канцерогенного риска на 67–75%, неканцерогенного риска при остром ингаляционном воздействии — на 53–59%, при хроническом ингаляционном воздействии — на 62–67% (табл. 3).

 

Таблица 3. Сравнительная оценка канцерогенного и неканцерогенного риска здоровью населения при воздействии атмосферных выбросов ТЭЦ-3, 95% ДИ / Table 3. Comparative assessment of carcinogenic and non-carcinogenic risk to public health of exposure to atmospheric emissions of CHP-3, 95% CI

Доля твёрдого топлива, %

Share of solid fuel, %

Модели сценариев работы ТЭЦ-3 | Models of CHP-3 operation scenarios

ТЭЦ-3 до модернизации

CHP-3 before modernization

Увеличение выработки электрической и тепловой энергии без модернизации ТЭЦ-3

Increase in the generation of electric and thermal energy without modernization of CHP-3

Модернизация с применением парогазовой установки, увеличение выработки электрической и тепловой энергии

Modernization of CHP-3 with the launch of a combined cycle gas plant, increase in the production of electrical and thermal energy

 

Индивидуальный канцерогенный риск для населения, ICR

Individual carcinogenic risk for population, ICR

 

взрослого

adults

детского

adults

взрослого

adults

детского

children

взрослого

adults

детского

children

10

7,09×107–7,43×107

3,31×107–3,47×107

1,21×10–6–1,27×10–6

5,66×107–5,93×107

3,23×107– 3,38×107

1,51×107– 1,58×107

50

2,71×10–6–2,83×10–6

1,26×10–6–1,32×10–6

4,09×10–6–4,28×10–6

1,91×10–6–2,0×10–6

9,84×107– 1,03×10–6

4,59×107– 4,81×107

90

4,71×10–6–4,94×10–6

2,20×10–6–2,30×10–6

7,21×10–6–7,55×10–6

3,36×10–6–3,52×10–6

3,04×10–6– 3,19×10–6

1,42×10–6– 1,49×10–6

 

Неканцерогенный риск (индекс опасности) ингаляционного воздействия, HI

Non-carcinogenic risk (hazard index) for inhalation exposure, HI

 

острого

acute

хронического

chronic

острого

acute

хронического

chronic

острого

acute

хронического

chronic

10

0,42–0,45

0,19–0,20

0,59–0,63

0,30–0,32

0,24–0,26

0,10–0,11

50

0,66–0,70

0,57–0,59

0,93–0,99

0,84–0,88

0,39–0,41

0,24–0,25

90

0,88–0,93

0,94–0,98

1,30–1,39

1,43–1,49

0,67–0,71

0,63–0,66

Примечание: уровень статистической значимости p <0,001.

Note: p <0.001 statistical significance level.

 

В условиях применения газотурбинной установки на ТЭЦ-3 наблюдается статистически значимое (p <0,001) снижение показателя годовой смертности от общих причин, годовых показателей смертности по причине БСК, БОД и рака лёгких на 33–64% по сравнению с аналогичными показателями в период до модернизации ТЭЦ и на 53–76% по сравнению с показателем при повышении мощности без модернизации. Кроме того, отмечается статистически значимая (p <0,001) отрицательная динамика показателей суточной смертности от БСК, БОД, острых форм БСК, суточной обращаемости за медицинской помощью по поводу БСК, суточной обращаемости по поводу бронхиальной астмы — снижение на 38–77% (табл. 4).

 

Таблица 4. Показатели относительного риска смертности, обращений за медицинской помощью и госпитализаций при воздействии атмосферных выбросов ТЭЦ-3, 95% ДИ / Table 4. Indicators of the relative risk of mortality, medical treatment and hospitalization of exposure to atmospheric emissions of CHP-3, 95% CI

Показатели

Parameters

Модели сценариев работы ТЭЦ-3 | Models of CHP-3 operation scenarios

ТЭЦ-3 до модернизации

CHP-3 before modernization

Увеличение выработки электрической и тепловой энергии без модернизации ТЭЦ-3

Increasing the generation of electrical and thermal energy without modernization of CHP-3

Модернизация с применением парогазовой установки, увеличение выработки электрической и тепловой энергии

Modernization with the use of CCGT, increasing the generation of electrical and thermal energy

Годовые показатели относительного риска | Annual relative risk indicators

Смертность от общих причин

Non-accidental mortality

1,005–1,013

1,007–1,016

1,003 1,008

Смертность от болезней системы кровообращения

Circulatory mortality

1,001–1,014

1,002–1,026

1,001–1,005

Смертность от болезней органов дыхания

Non-malignant respiratory mortality

1,009–1,030

1,014–1,047

1,004–1,016

Смертность от рака легких

Lung cancer mortality

1,005–1,016

1,009–1,030

1,002–1,006

Суточные показатели относительного риска | Daily indicators of relative risk

Смертность от общих причин

Non-accidental mortality

1,057–1,088

1,080–1,123

1,036–1,054

Смертность от болезней системы кровообращения

Circulatory mortality

1,014–1,046

1,022–1,071

1,005–1,016

Смертность от болезней органов дыхания

Non-malignant respiratory mortality

1,028–1,129

1,039–1,185

1,015–1,067

Смертность от острых форм болезней системы кровообращения

Myocardial infarction and stroke mortality

1,004–1,033

1,007–1,050

1,002–1,012

Обращения за медицинской помощью по причине болезней системы кровообращения

Daily hospital admissions for circulatory diseases

1,003–1,013

1,004–1,020

1,001–1,005

Обращения за медицинской помощью по причине бронхиальной астмы

Daily hospital admissions for asthma

1,023–1,220

1,031–1,306

1,020–1,139

 

ОБСУЖДЕНИЕ

Как показали результаты исследования, применение современных отечественных инженерно-технических разработок как наилучших доступных технологий в рамках программы модернизации многотопливных ТЭЦ позволяет существенно увеличить мощность ТЭЦ при значительном снижении рисков здоровью населения, проживающего в зоне влияния атмосферных выбросов предприятий теплоэнергетики. В исследовании впервые дана оценка риску здоровью населения при внедрении НТВ-технологии сжигания твёрдого и газообразного топлива, а также при совместной работе паросилового и парогазового энергоблоков в составе многотопливной ТЭЦ. Полученные результаты согласуются с данными отечественных и зарубежных исследований, применяющих методологию оценки риска для сравнительного анализа вреда здоровью населения предприятий теплоэнергетики в зависимости от структуры топливного баланса и модернизации оборудования [1, 2, 10, 11]. Результаты исследований, выполненных в Москве, Воронеже, Великом Новгороде, Вельске и Нижнем Новгороде, доказали, что уменьшение доли твёрдого топлива в структуре топливного баланса ТЭЦ, модернизация топочных систем котлоагрегатов и систем пылегазоочистки способствуют значительному снижению риска смертности и заболеваемости БОД, а также канцерогенного риска у населения, проживающего в зоне влияния выбросов предприятий теплоэнергетики [1]. За рубежом, в странах ЕС, в составе проекта ExternE был выполнен комплекс исследований по оценке медико-экологических и экономических последствий эксплуатации теплоэлектростанций, работающих на твёрдом и газообразном топливе. Согласно результатам данного проекта, основной вклад в экономический ущерб вносят смертность населения, а также обращения и госпитализации по поводу БОД в результате воздействия выбросов твёрдотопливных электростанций. Экономический ущерб, связанный с дополнительными случаями смерти и заболеваний, в 3–4 раза выше по сравнению с аналогичным показателем для электростанций, работающих на природном газе. Подчеркивается приоритетная роль мелкодисперсных фракций летучей золы в формировании рисков здоровью населения, проживающего в зоне влияния атмосферных выбросов электростанций, работающих на твёрдом топливе [3, 7, 12].

Как показали испытания котла БКЗ-210 после реконструкции, выбросы оксидов азота при работе на торфе сократились на 21,43%, при работе на каменном угле (кузнецкий уголь марки Д) — на 70,0% и при использовании в качестве топлива природного газа — на 66,22%. В среднем отмечается сокращение выбросов оксидов азота на 52,55%. При совместном сжигании угля и природного газа, а также одного твёрдого топлива применение НТВ-типа сжигания способствовало снижению содержания несгоревших частиц угольного вещества в составе выбросов котла (доли горючих в уносе) в среднем на 46,94%, что значительно сокращает эмиссию углерода в окружающую среду. Увеличение тонины помола угольной и торфяной пыли способствовало уменьшению доли частиц летучей золы диаметром менее 50 мкм на 18–20%. При переходе на НТВ-тип сжигания отмечается существенный прирост максимальной паропроизводительности и КПД котла при сжигании как твёрдого, так и газообразного топлива, что приводит к уменьшению удельного расхода топлива и снижению эмиссии загрязнителей в атмосферу [13]. Запуск в эксплуатацию парогазовой установки на ТЭЦ-3 позволил увеличить продукцию электрической энергии на 72,23%, тепловой — на 4,89% при значительном сокращении удельных расходов топлива и выбросов в атмосферу [2, 14]. Снижение количества выбросов в атмосферу достигается за счёт сокращения эмиссии твёрдых частиц на 50–70%, диоксида серы — на 47,5–62,0%, оксида углерода — на 68–80% и оксидов азота — на 3–38%. Основным источником загрязнения атмосферного воздуха является многотопливный паросиловой блок ТЭЦ, особенно при высоких значениях доли твёрдого топлива в топливном балансе.

При использовании НТВ-технологии сжигания твёрдого и газообразного топлива снижение уровня риска здоровью населения обусловлено уменьшением массы твёрдых частиц и оксидов азота в составе атмосферных выбросов многотопливной ТЭЦ, а также сокращением эмиссии в атмосферу в целом за счёт повышения КПД котлоагрегата и снижения удельных расходов на производство электрической и тепловой энергии. Для варианта модернизации ТЭЦ с совместной работой паросилового (старого) и парогазового (нового) энергоблоков снижение уровня риска здоровью населения обусловлено экономичностью и экологичностью работы ПГУ — высоким КПД, относительно небольшими удельными расходами на выработку электрической и тепловой энергии при значительном сокращении выбросов в атмосферу вредных химических веществ и твёрдых частиц [13, 14].

ЗАКЛЮЧЕНИЕ

Применение для модернизации многотопливных ТЭЦ наилучших доступных технологий, включающих современные отечественные инженерно-технические разработки, позволяет при увеличении выработки электрической и тепловой энергии значительно снизить уровень риска здоровью населения, сохранив преимущество использования как твёрдого, так и газообразного топлива.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ / ADDITIONAL INFORMATION

Вклад авторов: С.Б. Петров внёс существенный вклад в концепцию и дизайн исследования, получение, анализ и интерпретацию данных, подготовил первый вариант статьи; Ю.В. Жернов внёс существенный вклад в концепцию и дизайн исследования, участвовал в анализе данных, окончательно утвердил присланную в редакцию рукопись. Оба автора подтверждают соответствие своего авторства международным критериям ICMJE (оба автора внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией).

Authors' contribution: S.B. Petrov made a significant contribution to the concept and design of the study, obtaining, analyzing and interpreting data, prepared the first version of the article; Yu.V. Zhernov made a significant contribution to the concept and design of the study, participated in data analysis, finally approved the manuscript sent to the editorial office. Both authors confirm that their authorship meets the international ICMJE criteria (both authors have made a significant contribution to the development of the concept, research and preparation of the article, read and approved the final version before publication).

Финансирование исследования. Собственные средства.

Research funding. No external sources of funding.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Competing interests. Authors declare the absence of any conflict of interest.

×

Об авторах

Сергей Борисович Петров

Кировский государственный медицинский университет

Автор, ответственный за переписку.
Email: sbpetrov@mail.ru
ORCID iD: 0000-0002-2592-4432
SPIN-код: 4437-0407

к.м.н., доцент

Россия, 610998, Киров, ул. К. Маркса, 112

Юрий Владимирович Жернов

Первый Московский медицинский университет имени И.М. Сеченова (Сеченовский университет)

Email: zhernov@list.ru
ORCID iD: 0000-0001-8734-5527
SPIN-код: 4538-9397

д.м.н., доцент, профессор

Россия, Москва

Список литературы

  1. Авалиани С.Л., Буштуева К.А., Голуб А.А. Медико-демографическая оценка выгод от снижения выбросов парниковых газов. В кн.: Изменение климата и здоровье населения России в ХХІ веке: cб. матер. междунар. семинара; 2004 Апрель 5–6; Москва : Издательское товарищество «АдамантЪ»; 2004. С. 185–294.
  2. Ревич Б.А. К оценке влияния деятельности ТЭК на качество окружающей среды и здоровье населения // Проблемы прогнозирования. 2010. № 4. С. 87–99.
  3. Петров С.Б. Медико-экологическая оценка района размещения предприятий теплоэнергетики // Известия Самарского научного центра Российской академии наук. 2008. Т. 1. С. 209.
  4. Куликов М.А., Гаврилов Е.И., Демин В.Ф., Захарченко И.Е. Риск воздействия атмосферных выбросов электростанций на здоровье населения // Теплоэнергетика. 2009. № 1. С. 71–76.
  5. Ракитский В.Н., Кузьмин С.В., Авалиани С.Л., и др. Современные вызовы и пути совершенствования оценки и управления рисками здоровью населения // Анализ риска здоровью. 2020. № 3. С. 23–29. doi: 10.21668/health.risk/2020.3.03
  6. Резинских В.Ф., Гринь Е.А. Надежность и безопасность ТЭС России на современном этапе: проблемы и перспективные задачи // Теплоэнергетика. 2010. № 1. С. 2–8.
  7. Brunekreef B., Holgate S.T. Air pollution and health // Lancet. 2002. Vol. 360, N 9341. P. 1233–1242. doi: 10.1016/S0140-6736(02)11274-8
  8. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva : World Health Organization, 2021.
  9. Халафян А.А. Современные статистические методы медицинских исследований. Москва : Издательство ЛКИ, 2008. 320 c.
  10. Friedrich R., Rabl A., Spadaro J.V. Quantifying the costs of air pollution: the ExternE project of the EC // Pollution Atmosphérique. 2001. P. 77–104.
  11. Zhu Q., Luo X., Zhang B., et al. Mathematical modeling, validation, and operation optimization of an industrial complex steam turbine network-methodology and application // Energy. 2016. Vol. 97, N C. P. 191–213. doi: 10.1016/j.energy.2015.12.112
  12. Peng R.D., Bell M.L., Geyh A.S., et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution // Environ Health Perspect. 2009. Vol. 117, N 6. P. 957–963.
  13. Григорьев К.А., Скудицкий В.Е., Зыкин Ю.В. Опыт низкотемпературного вихревого сжигания различных видов топлива в котле БКЗ-210-13,8 Кировской ТЭЦ // Электрические станции. 2010. № 4. С. 9–13.
  14. Аминов Р.З., Гариевский М.В. Эффективность работы парогазовых ТЭЦ при переменных электрических нагрузках с учетом износа оборудования // Известия высших учебных заведений. Проблемы энергетики. 2018. Т. 20, № 7–8. С. 10–22.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 78166 от 20.03.2020.