Негативные эффекты наночастиц оксида марганца при ингаляционном поступлении в организм



Цитировать

Полный текст

Аннотация

В обзоре представлено аналитическое обобщение молекулярно-биологических, биохимических, цитологических, токсикологических свойств наночастиц оксида марганца при ингаляционном поступлении в организм в условиях эксперимента. Систематизация научных данных позволяет получить более полное представление о негативных эффектах, возникающих при ингаляционном воздействии наночастиц оксида марганца.

Полный текст

На сегодняшний день развитие нанотехнологий носит глобальное социально-экономическое значение. Согласно прогнозным оценкам в ближайшие годы ожидается широкое внедрение новых видов нанотехнологической продукции в различные области деятельности человека, включая медицину, фармацевтику, химическую и пищевую промышленность, производство товаров народного потребления [5]. Вместе с растущей коммерциализацией нанотехнологических продуктов возрастает вероятность прямого экспонирования людей наноматериалами. Ввиду недостаточной изученности потенциальных рисков, связанных с производством и использованием наноразмерных материалов, особую актуальность приобретают вопросы токсиколого-гигиенической оценки безопасности наноматериалов для здоровья человека и объектов среды обитания [12]. Развитие основных перспективных направлений нанотехнологии, таких как оптика, электроника, фармакология, оказывает непосредственное влияние на увеличение объема производства наночастиц оксида марганца, широко используемых при создании портативных источников тока [2], солнечных батарей и электроприборов, катализаторов и сорбирующего материала [23]. В связи с широким распространением в производстве и прогнозируемым ростом ингаляционного экспонирования работников наночастицами оксида марганца вопросы изучения негативных эффектов, возникающих при воздействии данного продукта, приобретают особую значимость [3]. К настоящему времени накоплен обширный материал о негативных эффектах, обусловленных хроническим ингаляционным поступлением микроразмерных частиц оксида марганца в организм и повышенным содержанием данного вещества в биологических средах. Преимущественное воздействие оксида марганца с традиционной размерностью частиц наблюдается у работников ферроплавильных, сталелитейных, сварочных производств и выражается в нарушении функций высших отделов центральной нервной системы, повреждении дыхательных путей, эндокринной и кровеносной систем, репродуктивной функции [14, 15, 20]. Наночастицы оксида марганца ввиду своих небольших размеров и высокой проникающей способности могут преодолевать гематоэн-цефалический барьер и вызывать морфофункциональные нарушения различных отделов центральной нервной системы при различных путях поступления в организм даже в небольших концентрациях [1, 3, 19]. Вышесказанное определяет актуальность детального исследования токсических свойств наночастиц оксида марганца. В настоящее время в научной литературе представлена разрозненная информация о полученных в эксперименте возможных негативных эффектах, обусловленных воздействием наночастиц оксида марганца при ингаляционном поступлении в организм. Систематизация имеющихся научных данных позволит получить более полное представление о негативных эффектах наночастиц оксида марганца, в том числе при их воздействии на центральную нервную систему. В исследованиях ряда авторов [7, 9] in vivo показано, что токсическое действие наночастиц оксида марганца (II, III) при ингаляционном поступлении в концентрации (0,47 ± 0,09) мг/м3 по 6 часов в день в течение 12 дней в дыхательные пути экспериментальных животных характеризуется уменьшением общего числа клеток в бронхоальвеолярном смыве, уменьшением массы тела экспериментальных животных. При этом происходит значительное увеличение содержания наночастиц оксида марганца (II, III) в легочной ткани, более чем в 2 раза превышающего физиологическую норму. Данный эффект не наблюдается при ингаляции аэрозолями микрочастиц оксида марганца (II, III), которые достаточно легко удаляются путем мукоцилиарного действия из дыхательных путей в желудочно-кишечный тракт, где поглощение данного соединения является довольно низким (около 3 %) [17]. Наблюдается значительное увеличение содержания наночастиц оксида марганца (II, III) в печени, обонятельной луковице, стриату-ме, мозжечке и в коре головного мозга [7, 17, 18], что свидетельствует об их поглощении в результате трансцитоза через клетки эпителия дыхательных путей в интерстиций с последующим выходом в кровь [8] и достижением наночастицами тканей мозга при поступлении из кровяного русла через капиллярные эндотелиальные клетки гематоэнцефалического барьера [9, 16]. При интраназальном введении наночастиц оксида марганца (IV) в дозе 2,63 мг/кг в течение 6 недель наблюдается появление нейротоксичности по увеличению относительного рефрактерного периода хвостового нерва [21]. При интратрахеальном введении изучаемого соединения в аналогичной дозе в течение 6 недель наблюдается значительное снижение массы тела, удлинение абсолютного рефрактерного периода хвостового нерва, уменьшение подвижности животных [21]. Также нейротоксичность наночастиц оксида марганца (IV) при интратрахеальном введении в дозах 2,63 мг/кг и 5,26 мг/кг проявляется в увеличении латентного периода возникновения коркового потенциала (суммарного ответа больших популяций нейронов коры на приходящий к ним синхронный поток импульсов, возникающий под воздействием афферентного раздражителя) в визуальной, слуховой и первой соматосенсорной области. Данный эффект может быть обусловлен нарушением функций мембран нейронов в результате перекисного окисления мембранных липидов, сопровождающегося нарушением гомеостаза кальция [21]. При хроническом воздействии интратрахеально вводимых наночастиц оксида марганца (IV) в дозе 2,63 мг/кг наблюдается увеличение удельного веса легких и надпочечников, возникновение эмфиземы легких, а также расширение сердца, что может быть связано с воспалением дыхательных путей [21]. По данным других исследований воспалительные изменения в легочной ткани не обнаружены [7]. При ингаляционном воздействии частицы оксида марганца (III, IV), не превышающие 30 нм, могут проникать в головной мозг непосредственно по обонятельному нерву. При повышении концентрации изучаемых частиц линейно повышается уровень p38 мутагенактивной протеинкиназы, запускающей апоп-тотический механизм преждевременной клеточной гибели [6, 13, 16]. При воздействии изучаемого вещества в обонятельной луковице, лобной коре, среднем мозге и полосатом теле в 2 раза увеличивается экспрессия гена фактора некроза опухоли-а [7]. При проведении исследований in vitro на клеточном уровне наиболее важным эффектом воздействия наночастиц оксида марганца (II, III) является образование активных форм кислорода (АФК), сопровождающееся высокой каталитической активностью и апоптозом клеток [7, 8]. Одним из параметров, показывающих уровень оксидативного стресса, является содержание окисленной (GSSG) и восстановленной (GSH) форм глутатиона. Установлено, что после 24 часов воздействия наночастиц оксида марганца (II, III) на альвеолярные эпителиальные клетки уровни внеклеточной и внутриклеточной GSSG увеличиваются на 30 и 80 % соответственно, при этом отмечается рост активности каспазы-3 — фермента, индуцирующего процессы апоптоза. Концентрация GSH увеличивается после 24 часов воздействия исследуемого соединения, что может быть связано с активацией синтеза у-глутамилцистеин синтетазы и повышением активности транспортной системы аминокислот ци-стина и глутамата, которые являются субстратами для синтеза восстановленной формы глутатиона [8]. Существенное увеличение содержания GSSG в клетке, индуцируемое наночастицами оксида марганца (II, III), может быть обусловлено вступлением частиц марганца в реакцию восстановления с образованием супероксида, который под действием супероксиддис-мутазы преобразуется в кислород и пероксид водорода. В последующем пероксид водорода разлагается при участии восстановленной формы глутатиона, что приводит к увеличению содержания GSSG. Другой возможный путь превращения пероксида водорода в клетке — образование в присутствии ионов марганца гидроксильных радикалов, которые также способны окислять GSH с образованием окисленной формы глутатиона [8]. В ряде исследований установлено, что наночастицы оксида марганца (III, IV) усиливают выработку воспалительных медиаторов микроглии и воспалительных цитокинов, таких как TNF-а, в нервной ткани, что может приводить к неконтролируемому или хроническому воспалению и негативно отразиться на тканевом гомеостазе [10]. 26 Экология человека 2013.11 Экология труда При воздействии наночастиц оксида марганца (II, IV) на клетки нейробластов и неделящихся постми-тотических нейронов происходит увеличение концентрации лактатдегидрогеназы в клеточной среде, плато достигается при воздействии наночастиц в концентрации 2,5-5,0 мкг/см3. Также при повышении концентрации изучаемых частиц отмечается линейный рост митохондриальной активности [22]. Наночастицы оксида марганца (III, IV) способны оказывать прямое токсическое действие не только на нейроны. Установлено, что астроциты могут накапливать наночастицы марганца и продуцировать АФК [9, 13]. Данный процесс сопровождается активацией протеолитического расщепления, опосредованного каспазой и протеинкиназой С5 (ферментами, участвующими в процессах апоптоза, некроза и воспалительных процессах), а также активацией цикла фосфорилирования [4, 9]. При ингаляционном воздействии наночастиц оксида марганца (III, IV) выявлена зависящая от времени активация белка трансферрина в дофаминергических нервных клетках, а также структурные изменения в белках Beclin 1 и LC3, что, в свою очередь, может указывать на потенциальную активацию процесса аутофагии [11]. В ряде исследований установлено, что наночастицы оксида марганца (IV) способны проникать внутрь нейроноподобных клеток РС-12, при этом наблюдается незначительное угнетение митохондриальной деятельности, также происходит дозозависимое уменьшение концентрации дофамина и его метаболитов: дигидроксифенилуксусной кислоты и гомованилиновой кислоты; данный процесс сопровождается многократным увеличением уровня АФК [11, 24]. В научной литературе имеются данные о том, что наночастицы марганца (52,1 ± 23,8) нм при 24-часовом воздействии на клетки РС-12 в концентрации 10 мг/см3 способны ингибировать экспрессию гена PARK2 и гена тирозингидроксилазы (фермента, катализирующего первую лимитирующую стадию синтеза катехоламинов, в том числе и дофамина). Установлено, что наночастицы марганца усиливают экспрессию гена SNCA, что приводит к двукратному увеличению содержания а-синуклеинов в клетках, участвующих в формировании различных нейродегенеративных расстройств [24]. Выводы и перспективы дальнейших исследований При выполнении исследований in vivo наблюдаются такие негативные эффекты ингаляционного воздействия наночастиц оксида марганца на организм экспериментальных животных, как уменьшение массы тела, уменьшение общей подвижности, увеличение относительного и абсолютного рефрактерного периода хвостового нерва, латентного периода возникновения коркового потенциала в визуальной слуховой и первой соматосенсорной области. В исследованиях in virto преимущественно отмечается увеличение активности лактатдегидрогеназы, увеличение содержания АФК и митохондриальной активности, уменьшение дофамина в клетках при воздействии наночастиц оксида марганца. Полученные результаты подтверждают общую и неврологическую токсичность наночастиц оксида марганца и подчеркивают высокий токсический потенциал при ингаляционном поступлении в организм, что требует проведения дальнейших токсикологогигиенических исследований для установления качественных характеристик и количественных параметров токсичности. Следует отметить, что уровень содержания марганца в биологических средах человека не является надежным показателем повреждений центральной нервной системы, необходимо проведение детальных исследований, направленных на поиски возможных нейрофункциональных биомаркеров химической природы.
×

Об авторах

Н В Зайцева

Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения

Марина Александровна Землянова

Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения

Email: zem@fcrisk.ru
доктор медицинских наук, зав. отделом биохимических и цитогенетических методов диагностики 614045, г. Пермь, ул. Монастырская, д. 82

Т И Акафьева

Пермский государственный национальный исследовательский университет

Список литературы

  1. Зайцева Н.В., Землянова М.А., Звездин В.Н., Саенко Е.В. и др. Токсиколого-гигиеническая оценка безопасности нанодисперсного и микродисперсного оксида марганца (III, IV) // Вопросы питания. 2012.Т. 81, № 5.С. 13-19.
  2. Трусов Л.И. Портативный источник тока: пат. 2396639 Рос. Федерация [Электронный ресурс] // Реестр российских патентов [2011]. URL: http://bd.patent.su/2396000-2396999/pat/servl/servletefce.html (дата обращения: 11.01.2013)
  3. Тутельян В.А., Гмошинский И.В., Глинцбург А.Л. и др. Методические рекомендации по выявлению наноматериалов, представляющих потенциальную опасность для здоровья человека: методические рекомендации. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 35 с.
  4. Afeseh Ngwa H., Kanthasamy A., Gu Y., Fang N. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells // US National Library of Medicine [2011]. http://www.ncbi.nlm.nih.gov/pubmed/21856324 (дата обращения: 23.01.2013).
  5. Balbus J.M., Maynard A.D., Colvin V.L., Castranova V. Hazard assessment for nanoparticles: Report from an interdisciplinary workshop // National Institute of Environmental Health Sciences. 2007. N 115(11). P. 1654-1659.
  6. Crittenden P.L., Filipov N.M. Manganese-induced potentiation of in vitro proinflammatory cytokine production by activated microglial cells is associated with persistent activation of p38 MAPK // Toxicology in Vitro. 2008. N 22. P. 18-27.
  7. Elder A., Gelein R., Silva V. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system // Environ. Health Perspectives. 2006. N 114. P. 1 172-1 178.
  8. Frick R., Müller-Edenborn B., Schlicker A., Rothen-Rutishauser B. Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells // US National Library of Medicine [2011]. http://www.ncbi.nlm.nih.gov/pubmed/21669262 (дата обращения: 12.01.2013).
  9. Horváth E., Maté Z., Takács S., Pusztai P. General and electrophysiological toxic effects of manganese in rats following subacute administration in dissolved and nanoparticle form // The Scientific World Journal [2012]. http://www. hindawi.com/journals/tswj/2012/520632/ (дата обращения: 16.01.2013).
  10. Hussain S., Javorina A., Schrand A., Duhart H. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion // US National Library of Medicine [2011]. http://www.ncbi.nlm.nih.gov/pubmed/16714391 (дата обращения: 20.01.2013).
  11. Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion // US National Library of Medicine [2011]. http://www.ncbi.nlm.nih.gov/pubmed/16714391 (дата обращения: 15.01.13).
  12. Kuzma J. Nanotechnology: Piecing Together the Puzzle of Risk // Controversies in Science and Technology: Volume 3 From Evolution to Energy. 2010. P. 243—255.
  13. lder A., Gelein R., Silva V. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system // Environ. Health Perspectives. 2006. N 114. P. 1172—1 178.
  14. Levy B.S., Nassetta W.J. Neurologic effects of manganese in humans: a review // US National Library of Medicine [2003]. http://www.ncbi.nlm.nih.gov/pubmed/12848244 (дата обращения: 04.02.13).
  15. Menezes-Filho J.A., Bouchard M., Sarcinelli P.N., Moreira J.C. Manganese exposure and the neuropsychological effect on children and adolescents: a review // US National Library of Medicine [2009]. http://www.ncbi.nlm.nih.gov/pubmed/20107709 (дата обращения: 02.02.13).
  16. Oberdorster G., Sharp Z., Atudorei V. Translocation of inhaled ultrafine particles to the brain // Inhal. Toxicol. 2004. N 16. P. 437—445.
  17. Ostiguy C., Asselin P., Malo S., Nadeau D. Prise en charge du manganisme d’origine professionnelle: Consensus d’un groupe d’experts: rapport IRSST, № 416 // IRSST. 2005. 62 p.
  18. Ostiguy C., Malo S., Asselin P. Synthese des connaissances scientifiques sur les risques d’atteinte a la sante suite a une exposition professionnelle au manganese: rapport IRSST, № 339 // IRSST. 2003. 41 p.
  19. Oszlánczi G., Horváth E., Szabó A., Horváth E. Subacute exposure of rats by metal oxide nanoparticles through the airways: general toxicity and neuro-functional effects // Acta Biologica Szegediensis. 2010. N 54.Р. 165—170.
  20. Santamaria A.B. Manganese exposure, essentiality & toxicity // US National Library of Medicine [2008]. http:// www.ncbi.nlm.nih.gov/pubmed/19106442 (дата обращения: 03.02.13).
  21. Sárközi L., Horváth E., Kónya Z., Kiricsi I. Subacute intratracheal exposure of rats to manganese nanoparticles: behavioral, electrophysiological, and general toxicological effects // US National Library of Medicine [2009]. http://www.ncbi.nlm.nih.gov/pubmed/19558238 (дата обращения: 20.01.2013).
  22. Stefanescu D., Khoshnan A., Patterson P., Hering J. Neurotoxicity of manganese oxide nanomaterials // Journal of Nanoparticle Research. 2009. N 11(8). P. 1957—1969.
  23. The World’s Manufacturer of Engineered & Advanced Materials // American Elements [2011]. http://www.americanelements.com/mnoxnp.html (дата обращения: 07.02.2013).
  24. Wang J., Rahman M., Duhart H., Newport G. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles // NeuroToxicology. 2009. N 30. Р. 926—933.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Экология человека, 2013



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 78166 от 20.03.2020.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах