DIOXINS IN THE ENVIRONMENT AND THE BODY OF ANIMALS NEAR LANDFILL: TO THE METHODOLOGY OF PUBLIC HEALTH RISK EVALUATION



Cite item

Full Text

Abstract

For the first time dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) were revealed by high resolution chromatography-mass spectrometry in tissues of animals (rodents and fish) and abiotic samples (soil, sediment, snow) from the biotopes near the landfill with solid wastes ("Salariyevo", New Moscow). Profiles of congeners in soil samples, snow and sediment were well comparable. Parameters of "toxic equivalency quantity" (WHO-TEQ98) greatly exceeded the levels registered in Vietnam dioxin-contaminated areas (territories of ecocide) known to produce a so-called dioxin pathology among population. As to the MPC for soil the observed levels near landfill were almost 38 times higher than the standards set in Russia. The consequences of the pollutants influence on the state of animals reflected the manifestations of toxic effects on the whole organism and the chromosome apparatus, in correlations with the parameters of dioxins (WHO-TEQ98) and/or TCDD in their tissues and objects in their natural habitat. Changes of cytogenetic status of fish and rodents, morphometric parameters of fish age dynamics, the emergence of individuals with abnormal head structure - correspond to pathological processes and conditions that determine the pathogenesis of human dioxin pathology. Analysis of the data obtained illustrates the possibility of creating a universal methodical approach for screening the hazards of dioxins' low dozes for human health.

Full Text

К группе диоксинов относят полихлорированные соединения дибензо-п-диоксинов (включая самый токсичный для животных конгенер - 2,3,7,8-тетрахлордибензо-п-диоксин - ТХДД), дибензофуранов и бифенилов. Загрязнение этими веществами сред городских и сельских поселений может быть следствием эксплуатации полигонов твердых отходов производства и потребления (ТО-ПиП) - активных источников образования диоксинов и их эмиссии в окружающую среду. Возможность экспозиции и вредного действия малых доз диоксинов на организмы обитателей биотопов, расположенных вблизи ТОПиП, до сих пор не изучали. Скрининговую оценку объектов обычно выполняют путем сопоставления эмпирических данных с санитарно-гигиеническими или экологическими нормативами, например предельно допустимыми концентрациями (ПДК). В случаях оценки опасности диоксинов, загрязняющих среду, опора только на нормативы не всегда оправдана, т. к. допустимые уровни вредного действия этих веществ для человека и многих видов животных однозначно не определены. Кроме того, современные возможности токсикометрии не позволяют достоверно отразить все особенности присущих этим веществам свойств. В частности, способностей ряда конгенеров диоксинов проявлять «парадоксальную токсичность*» [4], активного влияния природно-климатических факторов на судьбу этих веществ в окружающей среде [1, 13, 18], зависимости проявления токсических свойств от многих внешних, внутренних и временного факторов [7, 8, 11, 24]. В сложившихся обстоятельствах обоснованному решению задач скрининговой оценки могут способствовать экологические показатели, дополняющие санитарно-гигиенические нормативы или альтернативные им. Цель работы - иллюстрация возможности применения экологических показателей для скрининговой оценки загрязнённой диоксинами среды на территориях городских и сельских поселений, расположенных вблизи полигонов ТОПиП (на примере полигона ТОПиП «Саларьево», Новая Москва). Методы Полигон «Саларьево» (ПС, рис. 1А) находится в 3 км от московской кольцевой автодороги, ближайшие населенные пункты - поселения Картмазово и Саларьево (рис. 1Б, В). Создан в 1960-х годах на месте отработанного песчаного карьера (глубина » 3 м), специальные технологии и конструкции при создании ПС не применяли. На занимаемой им территории (» 59 га) захоронено » 15 млн тонн отходов различных классов опасности. В 2007 году полигон был закрыт и частично рекультивирован. Рис. 1. Местоположение полигона ТОПиП «Саларьево» (схема и фото со спутника с сайта Яндекса): А - полигон ТОПиП «Саларьево»; Б - поселение Картмазово; В - поселение Саларьево; Г - пруд в поселении Картмазово, где отобраны донные отложения и отловлены рыбы; Д - лесной участок, где отловлены грызуны, отобраны пробы почв и снега; Е, Ж - участки отбора проб почв Саларьево-1 и Саларьево-2 * В определенном диапазоне испытываемых доз по мере их увеличения частота встречаемости токсических эффектов достоверно снижается, а затем вновь возрастает; зависимость «доза - эффект» принимает нелинейный вид, который не поддается анализу традиционными методами токсикометрии. 10 Экология человека 2017.10 Окружающая среда Объектами исследований выбраны водный (пруд) и наземный природные биотопы вблизи ПС, примыкающие к поселению городского типа Картмазово. Выявленные ранее в почвах санитарной зоны ПС (до 500 м от границ тела полигона, рис. 1Е, Ж) высокие концентрации диоксинов [23] рассматривали как задел для настоящих исследований. Ближайшие к полигону сохранные участки лесных экосистем были найдены на удалении » 1,5 км от ПС на окраине поселения. Площадь водного зеркала пруда (рис. 1Г) составляет » 250 м2, его максимальная глубина » 3 м, дно илистое, водными растениями заселено незначительно. Видимых отличий от других прудов южного крыла Московского артезианского бассейна, расположенных в радиусе до 1,5 км, не отмечено. Искусственного зарыбления водоема не выявлено, поэтому всю отловленную рыбу рассматривали как коренных обитателей пруда. Наземная экосистема (рис. 1Д) представлена смешанным лесом с преобладанием мелколиственных пород (береза, осина); из хвойных деревьев присутствует ель, реже сосна. Обширно представлены подрост и кустарниковый ярус (бересклет, малина и др.), в примыкающих к ручью травянистых сообществах доминируют крапива и рогоз. На территориях выбранных биотопов отобраны образцы снега (n = 6), почв (n = 5), донных отложений (n = 4), а также отловлены животные-обитатели: серебряный карась (Carassius auratusgibelio, n = 52); мышевидные грызуны (малая лесная мышь Sylvaemus uralensis, n = 6 и рыжая полевка Clethrionomys glareolus, n = 2). Пробы почв, донных отложений и биоматериал (рыбы и мышевидные грызуны) собраны в 2014, пробы снега - в 2016 году. Пробы почвы из поверхностного слоя (5-15 см, » 0,5 кг) отбирали методом «конверта» (ГОСТ 17.4.4.02-84) на 5 площадках с длиной стороны квадрата 2 м. Полученные 5 образцов смешивали, рассматривая как одну матрицу. Донные отложения отобраны на расстоянии 1-3 м от обреза воды на глубине 0,5-1,0 м с помощью специального черпака. Пробы снега получены в конце зимнего периода (ГОСТ 17.1.5.05-85) на месте ранее отобранных и проанализированных почвенных образцов. На всю глубину снежного покрова методом конверта в банки объёмом 1,5 л были отобраны пробы снега, из которых для химического анализа была составлена одна объединённая проба. Снег рассматривали как естественный накопитель аэрозольных загрязняющих веществ воздуха, переносящий эти вещества на территории региона; почвы и донные отложения - как среды, для которых ПДК диоксинов юридически закреплены. Рыбу отлавливали сачком Киналева (неизбирательное орудие лова). У каждой особи определяли возраст (по числу годовых колец на чешуе), полную (от кончика рыла до конца хвостового стебля) и промысловую (от кончика рыла до конца чешуйчатого покрова) длину тела, вес порки (без внутренних органов) и коэффициент упитанности по Кларк (Q = q х 100 / l3, где Q - коэффициент упитанности, q - вес порки в граммах, l - промысловая длина, см). У части выборки (6 особей) анализировали кариопатологические изменения в эритроцитах. Частоту встречаемости у особи клеток с нарушениями определяли поштучно, подсчитывая по 2 000 эритроцитов под иммерсионным объективом. Проба для химического анализа была приготовлена из всей отловленной рыбы (n = 52). У всех отловленных особей малой лесной мыши и рыжей полевки из костного мозга были приготовлены препараты митотических метафазных хромосом по стандартной методике. На хромосомных препаратах рыжей полевки провели тотальный анализ клеток (n = 1 000) на всех стадиях митоза с учетом ка-риопатологии. На препаратах малой лесной мыши анализировали клетки (n = 100) на стадии метафазы с сохранной цитоплазматической подложкой и минимумом наложений хромосом. Учитывали анеуплоидию, полиплоидию, хромосомные фрагменты и аберрации. Анализ выполнен как с кариотипированием, так и без такового. Для химического анализа была приготовлена проба из всех отловленных особей (n = 8). Содержание приоритетных конгенеров ПХДД и ПХДФ определяли в образцах из матриц почв, донных отложений, тканей животных методом хромато-масс-спектрометрии высокого разрешения силами специалистов лаборатории аналитической экотоксикологии Института проблем экологии и эволюции им. А.Н. Северцова РАН (аттестат аккредитации № РОСС RU. 0001.511136) и Центра безопасности биосистем биофака Московского государственного университета им. М.В. Ломоносова. Показателями токсичности анализируемых конгенеров служили концентрации ТХДД и параметры так называемого «коэффициента эквивалентной токсичности» (WHO-TEQ98). Коэффициент биоаккумуляции рассчитывали как отношение параметров WHO-TEQ98 в тканях обследованных животных к таковому в средах из мест их обитания. Статистическая обработка данных выполнена методами непараметрического анализа с использованием критериев Фишера, Хи-квадрат, Манна - Уитни, Шапиро - Уилка, а также пробит-анализа [17]. Результаты Химические показатели, отражающие экотокси-кологическую ситуацию в местах обитания изучаемых видов животных, представлены в таблице. В образцах почвы суммарные значения WHO-TEQ98 после перевода в международный эквивалент токсичности (I-TEQ) почти в 38 раз превысили значения ПДК (I-TEQ для почв = 0,33 нг/кг). По убывающему градиенту этого показателя среды располагались: почвы > снег > донные отложения. Все среды содержали ТХДД. По загрязнению ТХДД порядок расположения сред стал иным: почвы > донные отложения > снег. При этом концентрации ТХДД в донных отложениях в 2 раза превышали уровень его содержания в пробах снега (0,7 пг/г против 0,3 пг/г), тогда как 11 Окружающая среда Экология человека 2017.10 Современные уровни содержания диоксинов в средах и тканях животных из окрестностей полигона «Саларьево» (пос. Картмазово) и загрязненных диоксинами территорий Вьетнама (средние значения для проб из Вьетнама рассчитаны пробит-методом) Объект исследований Концентрации диоксинов, пг/г ТХДД WHO- TEQgg Снег п. Картмазово 0,3 4,56 Почвы п. Картмазово 4,8 14,5 Вьетнам 0,4 (0,3-0,5) 0,9 (0,g-1,2) Донные отложения п. Картмазово 0,7 3,6 Вьетнам 0,2 (0,1-0,4) 1,1 (0,g-1,4) Ткани рыб п. Картмазово 0,2 1,1 Вьетнам 0,06 (0,04-0,1) 0,3 (0,2-0,4) Ткани мышевидных грызунов п. Картмазово 0,1 3,0 Вьетнам Данных нет Данных нет Ткани челове ка Сыворотка крови, n=23 Вьетнам 0,01 (0,003-0,02) 0,2 (0,3-0,8) плацента, n=10 0,02 (0,01-0,04) 0,1 (0,08-0,2) Грудное молоко, n=13 0,06 (0,05-0,08) 0,4 (0,3-0,8) по показателю WHO-TEQgg различия между этими средами были небольшими (3,6 пг/г против 4,6 пг/г) (см. таблицу). Профили конгенеров диоксинов в пробах почв, снега и донных отложений между собой, а также относительно ранее исследованных почвенных проб «Саларьево 1» и Саларьево 2», сопоставимы (рис. 2). Обнаружены высокие уровни содержания этих веществ в тканях рыб и мышевидных грызунов (см. таблицу). Коэффициент биоаккумуляции ТХДД организмом грызунов составил » 0,02, рыб » 0,3. Различия значений этого коэффициента у грызунов и рыб для WHO-TEQgg оказались менее существенными (0,2 и 0,3 соответственно), свидетельствуя о более высоких концентрациях высокозамещенных конгенеров в пробах (см. рис. 2). Биологические показатели. Цитогенетический анализ эритроцитов карасей продемонстрировал присутствие клеток с микроядрами (» 0,3 %), разрыхлением хроматина, вакуолями и другими аномалиями ядра (до 3 % клеток). Нарушения развития карасей проявились морфологическими аномалиями строения и изменениями морфометрических показателей. У трех из 39 отловленных сеголеток (рыбы данного года рождения) обнаружена редукция жаберной крышки. У одной особи эта аномалия сочеталась с изменением строения передней части головы (так называемая «мопсовидная голова»). У двухлеток морфологических аномалий строения не выявлено. По-видимому, молодь с аномалиями строения не доживает до следующего года. В целом морфологические аномалии редко встречаются в отсутствие неблагоприятных факторов различной природы [10]. Наглядным свидетельством нарушения развития карасей стала выраженная мозаичность значений коэффициента упитанности (от 0,82 до 2,71). Особи с очень низким его уровнем (Q < 1,5) отмечены среди сеголеток в 15 % случаев, а среди двухлетних рыб - в 56 % случаев. У мышевидных грызунов обнаружены цитогене -тические отклонения в клетках костного мозга. Так, у особей рыжей полевки около 10 % клеток имели темноокрашенное пикнотичное и/или фрагментированное ядро. При анализе ядер на стадии метафазы у малых лесных мышей суммарная доля клеток с анеуплоидией и аберрациями отдельных хромосом оказалась около 7 %, что превышает референсные значения этого показателя для природных популяций [2], кроме того, обнаружены единичные полиплоидные клетки. Рис. 2. Профили конгенеров диоксинов и фуранов в образцах проб различных сред из окрестностей полигона ТОПиП «Саларьево» 12 Экология человека 2017.10 Окружающая среда Обсуждение результатов Механизмы и закономерности проявлений токсичности химических веществ традиционно разрабатывают в опытах на лабораторных животных. Между тем опасность (вероятность проявления химическим веществом своих токсических свойств в определенных условиях) этих веществ для индивидуумов и/или особей из популяций, живущих на загрязненных территориях, достоверно отражают токсические эффекты во взаимосвязи с показателями судьбы этих веществ в окружающей среде. Именно поэтому методологической основой изучения и оценки экотоксикологической ситуации в окрестностях ПС стал анализ животных из природных биотопов. Теоретическое обоснование такого подхода представлено в «Концепции индивидуального риска в экотоксиологии» [14] и ключевых положениях «Концепции здоровья среды» [3]. Полученные результаты наглядно иллюстрируют значимость использованных экологических показателей для скрининговой оценки риска для здоровья населения малых доз диоксинов, загрязняющих среду вблизи полигонов ТОПиП. Появление диоксинов в тканях организмов из популяций, занимающих загрязненные этими веществами территории, свидетельствует о реальной опасности для здоровья и развития [6, 25]. При этом закономерности проникновения диоксинов из окружающей среды в организм определяют локальные особенности экотоксикокинетики этих веществ и связанный с ней временной фактор [11, 15]. В наших исследованиях промежутки времени, прошедшие с начала эксплуатации ПС (первая половина 1960-х) и применения армией США во Вьетнаме содержащей диоксин рецептуры «Оранжевый агент» (1962-1971), оказались практически одинаковыми. Это совпадение позволило предположить сходную направленность векторов перераспределения диоксинов между средами, а также поступления их в организмы. В почвах, донных отложениях и тканях рыб вблизи ПС уровни ТХДД и значения WHO-TEQgg были существенно выше, чем в современных пробах из Вьетнама. При этом показатели биоаккумуляции для обследованных видов животных из России и Вьетнама оказались сопоставимыми (см. таблицу) [5, 9]. Выявленные нарушения развития рыб и изменения цитогенетического гомеостаза у рыб и мышевидных грызунов свидетельствуют о неблагоприятных воздействиях условий их обитания, и в первую очередь присутствия диоксинов [19, 21]. Отметим сопоставимую направленность патологических процессов и изменений состояний, диагностированных у животных и населения загрязненных диоксинами территорий Вьетнама [9, 22]. Так, у живущих на территориях экоцида детей выявлено повышение частоты встречаемости врожденных морфогенетических вариантов, а также прирост уровня клеточных нарушений, сопровождаемый дисбалансом процессов пролиферации и гибели клеток [9]. У взрослого населения этих территорий в ответ на хроническое воздействие малых доз диоксинов диагностированы изменения метаболических реакций, функциональные нарушения репродукции [9, 11], усиление клеточных эффектов при дополнительных нагрузках [22]. Сходные процессы задержки развития органов репродуктивной системы зафиксированы у мальчиков из г. Чапаевск [20]. Выявление диоксинов в тканях животных из окрестностей ПС, с учетом данных биологических показателей и наших сведений об эффектах вредного действия малых доз диоксинов на здоровье населения Вьетнама, позволяет рассматривать состояние среды на территориях, прилегающих к ПС и пос. Картмазово, как потенциально опасное «в отношении максимально экспонируемого индивида» [12]. Хронические условия экспозиции малыми дозами в течение длительного времени предполагают обязательный учет вероятности развития угрозы жизни и здоровью не только для половозрелых индивидуумов, но и будущих поколений. Даже спустя » 40 лет после войны во Вьетнаме у женщин из загрязненных диоксинами районов эти загрязнители находят в крови, плаценте и грудном молоке [16]. Опасность передачи накопленных матерью диоксинов в полной мере еще не оценена. В то же время экспозиция клеток диоксинами на стадии активной пролиферации может демонстрировать проявления их токсичности на уровне активности эндогенных гормонов [19]. Мы предполагаем, что практическая и теоретическая значимость наших исследований связана с разработкой качественно новых способов обоснованного решения локальных проблем экологической безопасности, включая территории вблизи полигонов ТОПиП.
×

About the authors

V S Roumak

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Email: roumak@mail.ru

N V Umnova

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences

E S Levenkova

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences

K A Turbabina

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences; M.V. Lomonosov Moscow State University

E A Pivovarov

M.V. Lomonosov Moscow State University

A A Shelepchikov

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences

S D Pavlov

M.V. Lomonosov Moscow State University

References

  1. Бобун И.И., Иванов С.И., Унгуряну Т.Н., Гудков А.Б., Лазарева Н.К. К вопросу о региональном нормировании химических веществ в воде на примере Архангельской области // Гигиена и санитария. 2011. № 3. С. 91-95.
  2. Дмитриев С.Г., Захаров В. М. Оценка цитогенетического гомеостаза в природных популяциях некоторых видов мелких мышевидных грызунов // Онтогенез. 2001. Т. 32, № 6. С. 447-454.
  3. Захаров В.М. Здоровье среды: концепция. М.: Центр экологической политики России, 2000. 30 с.
  4. Криштопенко С.В., Тихонов М.С., Попова Е.Б. Парадоксальная токсичность. Нижний Новгород: Изд-во Нижегородской гос. мед. академии, 2001. 164 с.
  5. Кудрявцева А.Д., Шелепчиков А.А., Бродский Е.С., Фешин Д.Б., Румак В.С. Содержание диоксинов в яйцах птиц из различных районов Вьетнама // Вестник Московского университета. Сер. 16 Биология. 2015. № 2. С. 39-43.
  6. Кунцевич А.Д., Головков В.Ф., Рембовский В.Р. Дибензо-п-диоксины. Методы синтеза, химические свойства и оценка опасности // Успехи химии. 1996. Т. 65, № 1. С. 29-42.
  7. Левич А.П., Булгаков Н.Г., Барабаш А.П., Рисник Д.В., Фурсова П.В., Милько Е.С. Влияние экологических факторов на показатели заболеваемости населения // Безопасность в техносфере. 2015. № 1. С. 18-29.
  8. Лыжина А.В., Бузинов Р.В., Унгуряну Т.Н., Гудков А.Б. Химическое загрязнение продуктов питания и его влияние на здоровье населения Архангельской области // Экология человека. 2012. № 12. С. 3-9.
  9. Окружающая среда и здоровье человека в загрязненных диоксинами регионах Вьетнама / под. ред. Румака В.С., Павлова Д.С., Софронова Г.А. М.: Т-во научных изданий КМК, 2011. 271 с.
  10. Павлов С.Д., Кузищин К.В., Груздева М.А., Сенчукова А.Л., Пивоваров Е.А. Фенетическое разнообразие и пространственная структура гольцов (SALVELINUS) озерно-речной системы Кроноцкая (восточная Камчатка) // Вопросы ихтиологии. 2013. Т. 53, № 6. С. 645-670.
  11. Позняков С.П., Румак В.С., Софронов Г.А., Умнова Н.В. Диоксины и здоровье человека. Научные основы выявления диоксиновой патологии. СПб.: Наука. 2006. 274 с.
  12. Руководство по оценке риска для населения при воздействии химических веществ, загрязняющих окружающую среду. Руководство. P2.1.10.1920-04 (утв. Гл. гос. сан. врачом РФ 05.03.2004).
  13. Софронов Г.А., Румак В.С., Лазаренко Д.Ю. Экотоксикокинетика и экотоксикодинамика токсичных химических веществ в условиях тропиков // Медицинский академический журнал. 2010. Т. 10. № 4. С. 183-190.
  14. Софронов Г.А., Румак В.С., Позняков С.П., Умнова Н.В. Концепция индивидуального риска в экологической токсикологии. Диоксины суперэкотоксиканты ХХІ века. Отдалённые последствия применения «Оранжевого агента» / диоксина армией США во Вьетнаме (проблемы общей и тропической токсикологии). Инф. Вып. № 8. М.: ВИНИТИ, 2003. С. 132-135.
  15. Софронов Г.А., Румак В.С., Умнова Н.В., Белов Д.А., Турбабина К.А. Возможные риски хронического воздействия малых доз диоксинов для здоровья населения: к методологии выявления токсических эффектов // Медицинский академический журнал. 2016. Т. 16, № 3. С. 7-18.
  16. Фешин Д.Б., Шелепчиков А.А., Бродский Е.С., Калинкевич Г.А., Мир-Кадырова Е.Я., Румак В.С., Павлов Д.С. Современный уровень ПХДД и ПХДФ в плаценте и в грудном молоке жителей Южного Вьетнама // ДАН. 2008. Т. 423, № 4. С. 570-573.
  17. Холматова К.К., Харькова О.А., Гржибовский А.М. Экспериментальные исследования в медицине и здравоохранении: планирование, обработка данных интерпретация результатов // Экология человека. 2016. № 11 С. 50-58.
  18. Чащин В.П., Сюрин С.А., Гудков А.Б., Попова О.Н., Воронин А.Ю. Воздействие промышленных загрязнений атмосферного воздуха на организм работников, выполняющих трудовые операции на открытом воздухе в условиях холода // Медицина труда и промышленная экология. 2014. № 9. С. 20-26.
  19. Birnbaum L.S., Tuomisto J. Non-carcinogenic effects of TCDD in animals // Food Addit. Contam., 2000. Vol. 17, N 4. P. 275-288.
  20. Korrick S., Lee M., Williams P., Sergeyev O., Burns J., Patterson D., Turner W., Needham L., Altshul L., Revich B., Hauser R. Dioxin exposure and age of pubertal onset among Russian boys // Environ. Health Perspect. 2011. Vol. 119. P. 1339-1344.
  21. Liu Q., Rise M.L., Spitsbergen J.M., Hori T.S., Mieritz M., Geis S., McGraw J.E., Goetz G., Larson J., Hutz R. J., Carvan M.J. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure // Aquat. Toxicol. 2013. Vol. 140-141. P. 356-368.
  22. Sycheva L.P., Umnova N.V., Kovalenko M.A., Zhurkov V.S., Shelepchikov A.A., Roumak V.S. Dioxins and cytogenetic status of villagers after 40 years of Agent Orange application in Vietnam // Chemosphere. 2016. Vol. 144. P. 1415-1420.
  23. Umnova N.V., Levenkova E.S., Shelepchikov A.A., Turbabina K.A., Pivovarov E., Mir-Kadyrova E., Roumak V.S. Analysis of cytogenetic parameters in background species living on territories around landfill with municipal solid wastes // Final Programme and Abstract Book. European Environmental Mutagenesis and Genomic Society, 44th Ann. Meeting, 2015, Prague. P. 190.
  24. Unguryanu T., Novikov S., Buzinov R., Gudkov A., Grjibovski A. Respiratory diseases in a town with heavy pulp and paper industry // Epidemiologia and prevenzione. 2010. Vol. 34, iss. 5-6. P. 138.
  25. WHO (World Health Organization). Dioxins and Their Effects on Human Health. Fact sheet N 225. Updated October 2016. http://www.who.int/mediacentre/factsheets/fs225/en/.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Human Ecology



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 78166 от 20.03.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies