年轻阿尔汉格尔斯克居民偏好蔬菜水果的摄入与结肠微生物群的关系

封面


如何引用文章

全文:

详细

背景 。 微生物群的组成受多种环境因素的影响,其中饮食行为是关键因素之一。尽管北方居民饮食特点的研究已有较多文献支持,但有关蔬菜和水果摄入对北方居民微生物群影响的研究仍极其有限。

研究目的。 分析阿尔汉格尔斯克年轻居民(以医科大学的学生和工作人员为例)对蔬菜和水果的偏好及其与结肠微生物群组成之间的关系。

材料与方法。 研究纳入90名参与者(23名男性和67名女性),均为北方国立医科大学的学生或工作人员。入选标准包括:18至45岁之间、身体健康、体重指数正常,以及在研究期间无急性或慢性炎症性疾病。通过问卷调查评估蔬菜和水果的摄入情况,并通过粪便样本进行结肠微生物群的分子遗传学分析。利用多变量中位数回归模型评估33种微生物群指标与蔬菜和水果摄入的关系,调整因素包括性别、年龄和常住地区。

结果。 每日食用蔬菜的参与者占43.33%,每日食用水果的参与者占15.56%。最常食用的蔬菜是番茄(77.78%)和黄瓜(80.00%),土豆和胡萝卜的摄入率相对较低(25.00%)。最常见的水果包括苹果(74.44%)、香蕉(57.78%)和柑橘类水果(41.11%)。显著关联如下:Methanobrevibacter smithii 与番茄( p =0.008)和胡萝卜( p =0.006)显著相关;Prevotella spp. 与黄瓜( p =0.032)显著相关;Blautia spp. 与胡萝卜( p =0.002)和香蕉( p =0.020)显著相关;Acinetobacter spp. 与番茄(p=0.036)、土豆( p =0.028)和柑橘类水果( p =0.019)显著相关;Bifidobacterium spp. 与土豆( p =0.039)和柑橘类水果( p =0.002)显著相关; Bacteroides spp. 与黄瓜( p =0.023)显著相关。

结论。 研究表明,特定蔬菜和水果的摄入显著影响某些微生物的数量和分布。更深入地研究饮食因素对微生物群的影响,有助于为北方居民制定个性化饮食方案,从而改善微生物群的多样性与整体生活质量。

全文:

Table 1. Regression coefficients and their standard errors for the associations between consumption of selected vegetables and concentrations of gut microbiota species (lg CFU/g)

Род/вид представителя микробиоты толстой кишки

Genus/species of colon microbiota 

Регрессионные коэффициенты и их стандартные ошибки

Regression coefficients and their standard errors

Томаты

Tomato

Огурцы

Cucumber

Морковь

Carrot

Картофель

Potato

Acinetobacter spp

0,18 (0,08)*

0,18 (0,09)

-

-0,18 (0,08)*

Agathobacter rectalis

-0,05 (0,37)

-0,36 (0,40)

0,08 (0,36)

0,03 (0,32)

Akkermansia muciniphila

0 (0,80)

1,63 (2,76)

0 (2.69)

-3,00 (2,49)

Bacteroides spp

-0,18 (0,26)

0.65 (0.28)*

0.07 (0.25)

0,07 (0,24)

Bacteroides thethaiotaomicron

-0,17 (1,01)

0,47 (0,88)

-0.10 (0.89)

-0,68 (0,83)

Bifidobacterium spp

0.46 (0.38)

0.13 (0.37)

0.16 (0.33)

0.65 (0.31)*

Blautia spp

-0,52 (2,23)

-0,52 (2,31)

6.85 (2.12)*

0,21 (2,08)

Escherichia coli

0,12 (0,44)

0.14 (0.45)

0.52 (0.42)

0,11 (0,39)

Faecalibacterium prausnitzii

0 (0,23)

0,55 (0,19)*

-0.08 (0.21)

-0,18 (0,23)

Methanobrevibacter smithii

5,63 (2,06)*

1,10 (2,12)

-5,54 (1,97)*

-0,52 (1,88)

Prevotella spp

0,89 (0,96)

-2,00 (0,92)*

-0,56 (0,97)

0,14 (0,89)

Roseburia inulinivorans

0,15 (0,34)

0,01 (0,37)

-0,07 (0,32)

-0,10 (0,31)

Ruminococcus spp

-1.00 (1.71)

0 (2,20)

0 (2,04)

0,57 (1,97)

Streptococcus spp

0,04 (0,44)

0,78 (0,47)

0,25 (0,46)

0,23 (0,42)

Table 2. Regression coefficients and their standard errors for the associations between consumption of selected fruits and concentrations of gut microbiota species (lg CFU/g)

 

 Род/вид представителя микробиоты толстой кишки

Genus/species of colon microbiota

Регрессионные коэффициенты и их стандартные ошибки

Regression coefficients and their standard errors

Бананы

Bananas

Цитрусовые

Citrus

Яблоки

Apple

Acinetobacter spp

0,00 (1,00)

0,15 (0,06)*

0.00 (1.00)

Agathobacter rectalis

-0,12 (0,34)

0,09 (0,31)

-0.60 (0.32)

Akkermansia muciniphila

0,00 (1,00)

-0,21 (2,34)

-3.09 (2.74)

Bacteroides spp

-0,13 (0,91)

-0,17 (0,77)

0.34 (0.88)

Bacteroides thethaiotaomicron

-0,12 (0,24)

0,05 (0,22)

0.15 (0.25)

Bifidobacterium spp

-0,17 (0,33)

-0,70 (0,22)*

-0.59 (0.32)

Blautia spp

4,77 (2,01)*

0,00 (1,00)

0.00 (1.00)

Escherichia coli

-0,14 (0,36)

-0,44 (0,35)

-0.30 (0.44)

Faecalibacterium prausnitzii

-0,15 (0,18)

-0,22 (0,16)

0.00 (1.00)

Methanobrevibacter smithii

-0,24 (1,81)

0,10 (1,70)

-0.97 (2.04)

Prevotella spp

-0,23 (0,84)

-1,30 (0,87)

-0.79 (1.04)

Roseburia inulinivorans

0,05 (0,30)

0,15 (0,29)

-0.36 (0.38)

Ruminococcus spp

-0,30 (1,90)

-0,49 (1,81)

0.48 (2.07)

Streptococcus spp

-0,13 (0,44)

-0,30 (0,35)

0.02 (0.81)

* - уровень значимости р менее 0,05

Fig.1. Frequency fruits and vegetables consumption in the study sample.

Fig.2. Frequency of consumption of selected fruits and vegetables in the study sample

×

作者简介

Natalia Kukalevskaya

Northern State Medical University

编辑信件的主要联系方式.
Email: n.kukalevskaya@yandex.ru
ORCID iD: 0000-0003-3371-1485
SPIN 代码: 1844-4439
俄罗斯联邦, 51 Troitski ave., 163069 Arkhangelsk

Tatyana Bazhukova

Northern State Medical University

Email: tbazhukova@yandex.ru
ORCID iD: 0000-0002-7890-2341
SPIN 代码: 2220-2151

Dr. Sci (Med), Professor

俄罗斯联邦, 51 Troitski ave., 163069 Arkhangelsk

Michael Sabanaev

Northern State Medical University

Email: mix.sabanaeff@gmail.com
ORCID iD: 0000-0001-5642-3019
SPIN 代码: 8585-3051
俄罗斯联邦, 51 Troitski ave., 163069 Arkhangelsk

Andrej Grjibovski

Northern State Medical University; Northern (Arctic) Federal University n.a. M.V. Lomonosov; M.K. Ammosov North-Eastern Federal University

Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN 代码: 5118-0081

MD, MPhil, PhD

俄罗斯联邦, 51 Troitski ave., 163069 Arkhangelsk; Arkhangelsk; Yakutsk

参考

  1. Yudina YuV, Korsunsky AA, Aminova AI, et al. Gut microbiota as a separate body system. Russian Journal of Evidence-Based Gastroenterology. 2019;8(4–5):3643. EDN: VXOAUR d oi: 10.17116/dokgastro2019804-05136
  2. Oganezova IA, Medvedeva OI. Changes in intestinal microbiota as a cause and potential therapeutic target in constipation syndrome. Russian Medical Inquiry. 2020;4(5):302–307. E DN: LJULBI doi: 10.32364/2587-6821-2020-4-5-302-307
  3. Sheveleva SA, Kuvaeva IB, Efimochkina NR, et al. Gut microbiome: from the reference of the norm to pathology. Problems of Nutrition . 2020;89(4):35–51. EDN: SAVQCC d oi: 10.24411/0042-8833-2020-10040
  4. Baturin AK, Martinchik AN, Kambarov AO. The transit of Russian nation nutrition at the turn of the 20 th and 21 st centuries. Problems of Nutrition . 2020;89(4):60–70. EDN: BNBDXG doi: 10.24411/0042-8833-2020-10042
  5. Shepeleva OA, Novikova YuA, Degteva GN. Food safety in arctic and subarctic territories of the Russian European North. Ekologiya cheloveka (Human Ecology) . 2019;26(10):24–32. E DN: LSOWBM doi: 10.33396/1728-0869-2019-10-24-32 .
  6. Baturin AK, Keshabyants EE, Safronova AM, Netrebenko OK. Nutrition programming: nutrition for children over one year old. Pediatrics. Journal named after G.N. Speransky . 2013;92(2):92–99. (In Russ.) EDN: QIKKCD
  7. WHO. Healthy diet. [cited 2024 Jun 25]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/healthy-diet
  8. Stefler D, Pikhart H, Kubinova R, et al. Fruit and vegetable consumption and mortality in Eastern Europe: Longitudinal results from the health, alcohol and psychosocial factors in Eastern Europe study. Eur J Prev Cardiol . 2016;23(5):493–501. doi: 10.1177/2047487315582320
  9. Efimtseva EA, Chelpanova TI. Dietary fiber as modulators of gastrointestinal hormonal peptide secretion. Problems of Nutrition . 2021;90(4):20–35. EDN: BOJJPR d oi: 10.33029/0042-8833-2021-90-4-20-35
  10. Nikiforova NA, Karapetyan TA, Dorshakova NV. Feeding habits of the northerners (literature review). Ekologiya cheloveka (Human Ecology) . 2018;25(11):20–22. EDN: YNWBUL d oi: 10.33396/1728-0869-2018-11-20-22
  11. Istomin AV, Fedina IN, Shkurikhina SV, Kutakova NS. Food and the North: hygienic problems of the Arctic zone of Russia (the Review of the literature ). Hygiene and Sanitation, Russian Journal . 2018;97(6):557–563. EDN: XVLSPZ d oi: 10.18821/0016-9900-2018-97-6-557-563
  12. Skulskaya, LV, Shirokova TK. Problems and prospects of vegetable growing of the closed soil. Norwegian Journal of Development of the International Science. 2020;(39-3):35–39. EDN: BRFNES
  13. Rehman A, Tyree SM, Fehlbaum S, et al. A water-soluble tomato extract rich in secondary plant metabolites lowers trimethylamine-n-oxide and modulates gut microbiota: a randomized, double-blind, placebo-controlled cross-over study in overweight and obese adults. J Nutr . 2023;153(1):96–105. doi: 10.1016/j.tjnut.2022.11.009
  14. Brusa T, Ferrari F, Canzi E. Methanogenic bacteria: presence in foodstuffs. J Basic Microbiol . 1998;38(2):79–84.
  15. Meslier V, Laiola M, Roager HM, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut . 2020;69(7):1258–1268. doi: 10.1136/gutjnl-2019-320438
  16. Jagielski P, Bolesławska I, Wybrańska I, et al. Effects of a diet containing sources of prebiotics and probiotics and modification of the gut microbiota on the reduction of body fat. Int J Environ Res Public Health . 2023;20(2):1348. d oi: 10.3390/ijerph20021348
  17. Navya B, Babu S. Comparative metataxonamic analyses of seeds and leaves of traditional varieties and hybrids of cucumber ( Cucumis sativus L.) reveals distinct and core microbiome. Heliyon . 2023;9(9):e20216. doi: 10.1016/j.heliyon.2023.e20216
  18. Van den Abbeele P, Deyaert S, Albers R, et al. Carrot RG-I reduces interindividual differences between 24 adults through consistent effects on gut microbiota composition and function Ex Vivo. Nutrients . 2023;15(9):2090. doi: 10.3390/nu15092090
  19. Gabdukaeva LZ, Nikitina EV, Reshetnik OA. Resistant starches as a functional ingredient in food production. Bulletin of the Kazan Technological University . 2014;17(23):253–255. (In Russ.) E DN: TCCWQX
  20. Storozhev YaV. Current status and trends of import of AIC products to India. Moscow Economic Journal . 2023;8(3):187–201. EDN: TKKCCF doi: 10.55186/2413046X_2023_8_3_120
  21. Katsirma Z, Dimidi E, Rodriguez-Mateos A, Whelan K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct . 2021;12(19):8850–8866. doi: 10.1039/d1fo01125a
  22. Alonso-Salces RM, Korta E, Barranco A, et al. Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A . 2001;933(1-2):37–43. d oi: 10.1016/s0021-9673(01)01212-2
  23. Puértolas-Balint F, Schroeder BO. Does an apple a day also keep the microbes away? The interplay between diet, microbiota, and host defense peptides at the intestinal mucosal barrier. Front Immunol . 2020;11:1164. doi: 10.3389/fimmu.2020.01164
  24. Hall DA, Voigt RM, Cantu-Jungles TM, et al. An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants. Nat Commun . 2023;14(1):926. doi: 10.1038/s41467-023-36497-x
  25. Iwata E, Hotta H, Goto M. Hypolipidemic and bifidogenic potentials in the dietary fiber prepared from Mikan (Japanese mandarin orange: Citrus unshiu) albedo. J Nutr Sci Vitaminol (Tokyo) . 2012;58(3):175–180. doi: 10.3177/jnsv.58.175
  26. Swanson KS, de Vos WM, Martens EC, et al. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Benef Microbes . 2020;11(2):101–129. doi: 10.3920/BM2019.0082
  27. An J, Yang J, Kwon H, et al. Prediction of breast cancer using blood microbiome and identification of foods for breast cancer prevention. Sci Rep . 2023;13(1):5110. d oi: 10.1038/s41598-023-32227-x
  28. Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions [published correction appears in Nature. 2017 Aug 31;548(7669):612. doi: 10.1038/nature23659] . Nature . 2017;544(7648):65–70. doi: 10.1038/nature21725
  29. Zahid HF, Ali A, Ranadheera CS, et al. Identification of phenolics profile in freeze-dried apple peel and their bioactivities during in vitro digestion and colonic fermentation. Int J Mol Sci . 2023;24(2):1514. doi: 10.3390/ijms24021514
  30. Choi YJ, Seelbach MJ, Pu H, et al. Polychlorinated biphenyls disrupt intestinal integrity via NADPH oxidase-induced alterations of tight junction protein expression. Environ Health Perspect . 2010;118(7):976–981. doi: 10.1289/ehp.0901751

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Frequency of fruits and vegetables consumption in the study sample.

下载 (112KB)
3. Fig. 2. Frequency of preferred fruits and vegetables consumption in the study sample.

下载 (90KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 78166 от 20.03.2020.