Preferred fruit and vegetable consumption and colonic microbiota in young residents of Arkhangelsk
- Authors: Kukalevskaya N.N.1, Bazhukova T.A.1, Sabanaev M.A.1, Grjibovski A.M.1,2,3
-
Affiliations:
- Northern State Medical University
- Northern (Arctic) Federal University n.a. M.V. Lomonosov
- M.K. Ammosov North-Eastern Federal University
- Issue: Vol 31, No 4 (2024)
- Pages: 279-290
- Section: ORIGINAL STUDY ARTICLES
- Submitted: 27.06.2024
- Accepted: 07.10.2024
- Published: 12.12.2024
- URL: https://hum-ecol.ru/1728-0869/article/view/633894
- DOI: https://doi.org/10.17816/humeco633894
- ID: 633894
Cite item
Full Text
Abstract
Background: The composition of colonic microbiota is influenced by environmental factors, including dietary habits. Several studies on dietary habits and nutrition of Arctic residents have been published, but the information on the associations between fruit and vegetable consumption and gut microbiota is scarce.
Aim: This study aimed to evaluate the impact of preferred fruit and vegetable consumption on colonic microbiota in young residents of Arkhangelsk, using a sample of students and staff from a medical university.
Material and methods: The study included 90 healthy volunteers (23 men and 67 women) from Northern State Medical University in Arkhangelsk aged 18–45 years with a normal body mass index. Fruit and vegetable consumption was assessed using a questionnaire. Stool samples were collected for molecular genetic analysis of colonic microbiota. Associations between fruit and vegetable consumption and concentrations of 33 microbiota indicators were examined using multivariable median regression, with adjustments made for age, gender, and place of origin.
Results: Vegetables and fruits were consumed daily by 43.33% and 15.56% of respondents, respectively. The most frequently consumed vegetables were tomatoes (77.78%) and cucumbers (80.0%), while only 25.00% consumed potatoes and carrots. Among fruits, apples were consumed most frequently (74.44%), followed by bananas (57.78%) and citrus fruits (41.11%). Significant associations were found between Methanobrevibacter smithii and tomatoes ( p =0.008) and carrots ( p =0.006), between Prevotella spp. and cucumbers ( p =0.032), Blautia spp. and carrots ( p =0.002) and bananas ( p =0.020). Additionally, association was found for Acinetobacter spp. with tomatoes ( p =0.036), potatoes ( p =0.028) and citrus fruits ( p =0.019), Bifidobacterium spp. with potatoes ( p =0.039) and citrus fruits ( p =0.002). Direct association was found between Bacteroides spp. and cucumbers ( p =0.023).
Conclusion: Our findings on the associations between selected fruits and vegetables and microbial concentrations may contribute to the development of personalized and balanced diet to enrich microbiota biodiversity and improve the quality of life of the residents of the North.
Keywords
Full Text
Table 1. Regression coefficients and their standard errors for the associations between consumption of selected vegetables and concentrations of gut microbiota species (lg CFU/g)
Род/вид представителя микробиоты толстой кишки Genus/species of colon microbiota | Регрессионные коэффициенты и их стандартные ошибки Regression coefficients and their standard errors | |||
Томаты Tomato | Огурцы Cucumber | Морковь Carrot | Картофель Potato | |
Acinetobacter spp | 0,18 (0,08)* | 0,18 (0,09) | - | -0,18 (0,08)* |
Agathobacter rectalis | -0,05 (0,37) | -0,36 (0,40) | 0,08 (0,36) | 0,03 (0,32) |
Akkermansia muciniphila | 0 (0,80) | 1,63 (2,76) | 0 (2.69) | -3,00 (2,49) |
Bacteroides spp | -0,18 (0,26) | 0.65 (0.28)* | 0.07 (0.25) | 0,07 (0,24) |
Bacteroides thethaiotaomicron | -0,17 (1,01) | 0,47 (0,88) | -0.10 (0.89) | -0,68 (0,83) |
Bifidobacterium spp | 0.46 (0.38) | 0.13 (0.37) | 0.16 (0.33) | 0.65 (0.31)* |
Blautia spp | -0,52 (2,23) | -0,52 (2,31) | 6.85 (2.12)* | 0,21 (2,08) |
Escherichia coli | 0,12 (0,44) | 0.14 (0.45) | 0.52 (0.42) | 0,11 (0,39) |
Faecalibacterium prausnitzii | 0 (0,23) | 0,55 (0,19)* | -0.08 (0.21) | -0,18 (0,23) |
Methanobrevibacter smithii | 5,63 (2,06)* | 1,10 (2,12) | -5,54 (1,97)* | -0,52 (1,88) |
Prevotella spp | 0,89 (0,96) | -2,00 (0,92)* | -0,56 (0,97) | 0,14 (0,89) |
Roseburia inulinivorans | 0,15 (0,34) | 0,01 (0,37) | -0,07 (0,32) | -0,10 (0,31) |
Ruminococcus spp | -1.00 (1.71) | 0 (2,20) | 0 (2,04) | 0,57 (1,97) |
Streptococcus spp | 0,04 (0,44) | 0,78 (0,47) | 0,25 (0,46) | 0,23 (0,42) |
Table 2. Regression coefficients and their standard errors for the associations between consumption of selected fruits and concentrations of gut microbiota species (lg CFU/g)
Род/вид представителя микробиоты толстой кишки Genus/species of colon microbiota | Регрессионные коэффициенты и их стандартные ошибки Regression coefficients and their standard errors | ||
Бананы Bananas | Цитрусовые Citrus | Яблоки Apple | |
Acinetobacter spp | 0,00 (1,00) | 0,15 (0,06)* | 0.00 (1.00) |
Agathobacter rectalis | -0,12 (0,34) | 0,09 (0,31) | -0.60 (0.32) |
Akkermansia muciniphila | 0,00 (1,00) | -0,21 (2,34) | -3.09 (2.74) |
Bacteroides spp | -0,13 (0,91) | -0,17 (0,77) | 0.34 (0.88) |
Bacteroides thethaiotaomicron | -0,12 (0,24) | 0,05 (0,22) | 0.15 (0.25) |
Bifidobacterium spp | -0,17 (0,33) | -0,70 (0,22)* | -0.59 (0.32) |
Blautia spp | 4,77 (2,01)* | 0,00 (1,00) | 0.00 (1.00) |
Escherichia coli | -0,14 (0,36) | -0,44 (0,35) | -0.30 (0.44) |
Faecalibacterium prausnitzii | -0,15 (0,18) | -0,22 (0,16) | 0.00 (1.00) |
Methanobrevibacter smithii | -0,24 (1,81) | 0,10 (1,70) | -0.97 (2.04) |
Prevotella spp | -0,23 (0,84) | -1,30 (0,87) | -0.79 (1.04) |
Roseburia inulinivorans | 0,05 (0,30) | 0,15 (0,29) | -0.36 (0.38) |
Ruminococcus spp | -0,30 (1,90) | -0,49 (1,81) | 0.48 (2.07) |
Streptococcus spp | -0,13 (0,44) | -0,30 (0,35) | 0.02 (0.81) |
* - уровень значимости р менее 0,05
Fig.1. Frequency fruits and vegetables consumption in the study sample.
Fig.2. Frequency of consumption of selected fruits and vegetables in the study sample
About the authors
Natalia N. Kukalevskaya
Northern State Medical University
Author for correspondence.
Email: n.kukalevskaya@yandex.ru
ORCID iD: 0000-0003-3371-1485
SPIN-code: 1844-4439
Russian Federation, 51 Troitski ave., 163069 Arkhangelsk
Tatyana A. Bazhukova
Northern State Medical University
Email: tbazhukova@yandex.ru
ORCID iD: 0000-0002-7890-2341
SPIN-code: 2220-2151
Dr. Sci (Med), Professor
Russian Federation, 51 Troitski ave., 163069 ArkhangelskMichael A. Sabanaev
Northern State Medical University
Email: mix.sabanaeff@gmail.com
ORCID iD: 0000-0001-5642-3019
SPIN-code: 8585-3051
Russian Federation, 51 Troitski ave., 163069 Arkhangelsk
Andrej M. Grjibovski
Northern State Medical University; Northern (Arctic) Federal University n.a. M.V. Lomonosov; M.K. Ammosov North-Eastern Federal University
Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN-code: 5118-0081
MD, MPhil, PhD
Russian Federation, 51 Troitski ave., 163069 Arkhangelsk; Arkhangelsk; YakutskReferences
- Yudina YuV, Korsunsky AA, Aminova AI, et al. Gut microbiota as a separate body system. Russian Journal of Evidence-Based Gastroenterology. 2019;8(4–5):3643. EDN: VXOAUR d oi: 10.17116/dokgastro2019804-05136
- Oganezova IA, Medvedeva OI. Changes in intestinal microbiota as a cause and potential therapeutic target in constipation syndrome. Russian Medical Inquiry. 2020;4(5):302–307. E DN: LJULBI doi: 10.32364/2587-6821-2020-4-5-302-307
- Sheveleva SA, Kuvaeva IB, Efimochkina NR, et al. Gut microbiome: from the reference of the norm to pathology. Problems of Nutrition . 2020;89(4):35–51. EDN: SAVQCC d oi: 10.24411/0042-8833-2020-10040
- Baturin AK, Martinchik AN, Kambarov AO. The transit of Russian nation nutrition at the turn of the 20 th and 21 st centuries. Problems of Nutrition . 2020;89(4):60–70. EDN: BNBDXG doi: 10.24411/0042-8833-2020-10042
- Shepeleva OA, Novikova YuA, Degteva GN. Food safety in arctic and subarctic territories of the Russian European North. Ekologiya cheloveka (Human Ecology) . 2019;26(10):24–32. E DN: LSOWBM doi: 10.33396/1728-0869-2019-10-24-32 .
- Baturin AK, Keshabyants EE, Safronova AM, Netrebenko OK. Nutrition programming: nutrition for children over one year old. Pediatrics. Journal named after G.N. Speransky . 2013;92(2):92–99. (In Russ.) EDN: QIKKCD
- WHO. Healthy diet. [cited 2024 Jun 25]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/healthy-diet
- Stefler D, Pikhart H, Kubinova R, et al. Fruit and vegetable consumption and mortality in Eastern Europe: Longitudinal results from the health, alcohol and psychosocial factors in Eastern Europe study. Eur J Prev Cardiol . 2016;23(5):493–501. doi: 10.1177/2047487315582320
- Efimtseva EA, Chelpanova TI. Dietary fiber as modulators of gastrointestinal hormonal peptide secretion. Problems of Nutrition . 2021;90(4):20–35. EDN: BOJJPR d oi: 10.33029/0042-8833-2021-90-4-20-35
- Nikiforova NA, Karapetyan TA, Dorshakova NV. Feeding habits of the northerners (literature review). Ekologiya cheloveka (Human Ecology) . 2018;25(11):20–22. EDN: YNWBUL d oi: 10.33396/1728-0869-2018-11-20-22
- Istomin AV, Fedina IN, Shkurikhina SV, Kutakova NS. Food and the North: hygienic problems of the Arctic zone of Russia (the Review of the literature ). Hygiene and Sanitation, Russian Journal . 2018;97(6):557–563. EDN: XVLSPZ d oi: 10.18821/0016-9900-2018-97-6-557-563
- Skulskaya, LV, Shirokova TK. Problems and prospects of vegetable growing of the closed soil. Norwegian Journal of Development of the International Science. 2020;(39-3):35–39. EDN: BRFNES
- Rehman A, Tyree SM, Fehlbaum S, et al. A water-soluble tomato extract rich in secondary plant metabolites lowers trimethylamine-n-oxide and modulates gut microbiota: a randomized, double-blind, placebo-controlled cross-over study in overweight and obese adults. J Nutr . 2023;153(1):96–105. doi: 10.1016/j.tjnut.2022.11.009
- Brusa T, Ferrari F, Canzi E. Methanogenic bacteria: presence in foodstuffs. J Basic Microbiol . 1998;38(2):79–84.
- Meslier V, Laiola M, Roager HM, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut . 2020;69(7):1258–1268. doi: 10.1136/gutjnl-2019-320438
- Jagielski P, Bolesławska I, Wybrańska I, et al. Effects of a diet containing sources of prebiotics and probiotics and modification of the gut microbiota on the reduction of body fat. Int J Environ Res Public Health . 2023;20(2):1348. d oi: 10.3390/ijerph20021348
- Navya B, Babu S. Comparative metataxonamic analyses of seeds and leaves of traditional varieties and hybrids of cucumber ( Cucumis sativus L.) reveals distinct and core microbiome. Heliyon . 2023;9(9):e20216. doi: 10.1016/j.heliyon.2023.e20216
- Van den Abbeele P, Deyaert S, Albers R, et al. Carrot RG-I reduces interindividual differences between 24 adults through consistent effects on gut microbiota composition and function Ex Vivo. Nutrients . 2023;15(9):2090. doi: 10.3390/nu15092090
- Gabdukaeva LZ, Nikitina EV, Reshetnik OA. Resistant starches as a functional ingredient in food production. Bulletin of the Kazan Technological University . 2014;17(23):253–255. (In Russ.) E DN: TCCWQX
- Storozhev YaV. Current status and trends of import of AIC products to India. Moscow Economic Journal . 2023;8(3):187–201. EDN: TKKCCF doi: 10.55186/2413046X_2023_8_3_120
- Katsirma Z, Dimidi E, Rodriguez-Mateos A, Whelan K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct . 2021;12(19):8850–8866. doi: 10.1039/d1fo01125a
- Alonso-Salces RM, Korta E, Barranco A, et al. Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A . 2001;933(1-2):37–43. d oi: 10.1016/s0021-9673(01)01212-2
- Puértolas-Balint F, Schroeder BO. Does an apple a day also keep the microbes away? The interplay between diet, microbiota, and host defense peptides at the intestinal mucosal barrier. Front Immunol . 2020;11:1164. doi: 10.3389/fimmu.2020.01164
- Hall DA, Voigt RM, Cantu-Jungles TM, et al. An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants. Nat Commun . 2023;14(1):926. doi: 10.1038/s41467-023-36497-x
- Iwata E, Hotta H, Goto M. Hypolipidemic and bifidogenic potentials in the dietary fiber prepared from Mikan (Japanese mandarin orange: Citrus unshiu) albedo. J Nutr Sci Vitaminol (Tokyo) . 2012;58(3):175–180. doi: 10.3177/jnsv.58.175
- Swanson KS, de Vos WM, Martens EC, et al. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Benef Microbes . 2020;11(2):101–129. doi: 10.3920/BM2019.0082
- An J, Yang J, Kwon H, et al. Prediction of breast cancer using blood microbiome and identification of foods for breast cancer prevention. Sci Rep . 2023;13(1):5110. d oi: 10.1038/s41598-023-32227-x
- Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions [published correction appears in Nature. 2017 Aug 31;548(7669):612. doi: 10.1038/nature23659] . Nature . 2017;544(7648):65–70. doi: 10.1038/nature21725
- Zahid HF, Ali A, Ranadheera CS, et al. Identification of phenolics profile in freeze-dried apple peel and their bioactivities during in vitro digestion and colonic fermentation. Int J Mol Sci . 2023;24(2):1514. doi: 10.3390/ijms24021514
- Choi YJ, Seelbach MJ, Pu H, et al. Polychlorinated biphenyls disrupt intestinal integrity via NADPH oxidase-induced alterations of tight junction protein expression. Environ Health Perspect . 2010;118(7):976–981. doi: 10.1289/ehp.0901751
