Nanoparticles and nanomaterials as inevitable modern toxic agents. Review. Part 1. Application of nanoparticles and occupational nanotoxicology

Cover Page


Cite item

Abstract

Almost every person in all spheres of activity is in contact with nanoparticles (NPs) worldwide. The use of NPs in medicine, everyday life, food industry, and many other areas is expanding. Therefore, in the 2010s, a new scientific direction, namely, nanosafety, was developed actively. The effects of contact with NPs on cells and tissues, including inflammation, development of oxidative stress, disruption of the DNA structure, apoptosis, and disruption of the functioning of tissues and organs, have been studied within the framework of the study of molecular and cellular toxicity. NPs with waste and emissions are carried by air, water, and soil, which then enter living organisms. The impact of NPs on ecosystems is assessed on the basis of their toxicity to the environment. NPs pose a significant danger to workers in production, where contact with NPs can be long and chronic. In occupational pathology, data are accumulated on NP-induced health problems and associated risk factors in workers in the nanotechnology industry. Given the abundance of NPs in human, expectant mothers and young children inevitably come into contact with them; therefore, studying the influence of NPs on the intrauterine and early development of offspring is an important area of research. The brain is a vulnerable place for exposure to NPs because of their ability to cross the blood–brain barrier. Evidence of disturbances in the structure and functions of the brain in adults and young animals is found in all areas of research on the toxicity of NPs. Methods for assessing various aspects of behavior based on various brain functions, including cognition, can provide insights into the negative consequences of contact with NPs for high nervous activity. These results are described in detail and systematically in the presented review. However, such results need further research. In a number of studies, the toxic effect of NPs remains unclear. Furthermore, whether these situations can be used for protection against the toxic effects of NPs must be investigated.

Full Text

ВВЕДЕНИЕ

С конца XX века интенсивное развитие нанотехнологий и их применения в различных отраслях экономики, в быту, в медицине привело к появлению нового направления в науке — нанобезопасности [1–3]. Цель нанобезопасности заключается в защите окружающей среды и здоровья человека от негативного воздействия наночастиц (НЧ), нанотехнологий и наноматериалов в целом. В начале 2000-х годов встречались только первые разрозненные сведения о возможной токсичности НЧ [4]. В 2009–2010 годах появились первые обзоры по проблеме токсичности НЧ [4–7]. На уровне государств стали выпускаться методические рекомендации по изучению токсичности наноматериалов, например, в Российской Федерации [8, 9]. Стало понятно, что НЧ обладают крайне высокой проникающей способностью, они накапливаются во всех органах и тканях. Биологические барьеры не останавливают НЧ, как следствие они проходят в мозг и в гонады, проникают в молоко и через плаценту переходят от матери к плоду [10–13]. В клетках НЧ вызывают развитие окислительного [14–19] и нитрозирующего стресса [20, 21]. В присутствии НЧ меняются уровни экспрессии генов как связанных с окислительным стрессом белков, в том числе антиоксидантов, так и регуляторов клеточного цикла, различных рецепторов и структурных белков. Нарушается структура ДНК, и в пострадавших от НЧ клетках происходят разупорядочивание и чрезмерная конденсация хроматина, выявляются биохимические признаки множественных разрывов цепей ДНК [15, 21, 22]. Клетки претерпевают деформацию, а затем апоптоз. В тканях развиваются воспаление, некроз, фиброз [16, 18, 22].

Организм оказывается наиболее уязвим для НЧ в раннем онтогенезе, тогда нарушаются уровни экспрессии генов факторов клеточного развития, наблюдаются патологии развития органов, включая мозг, глаза, сердце. У потомства может быть снижено качество спермы [10, 23, 24]. Поведение животных как после воздействия на них НЧ во взрослом возрасте, так и после произошедшего в раннем онтогенезе контакта с НЧ, значимо меняется. При этом нарастает тревожность [20, 25–27], проявляются признаки депрессии [22, 28], снижается способность к научению и нарушается память [10, 29–32], выявляются нарушения социальных взаимодействий [25, 33].

На сегодняшний день более чем в 60 странах, таких как США, Япония, Россия, страны Евросоюза, а также в ряде стран Азии и Ближнего Востока, приняты и выполняются комплексные национальные программы развития наноиндустрии. В эти программы входят фундаментальные исследования, разработка и производство нанопродукции, здравоохранение, вопросы обороны и экологической безопасности [34, 35]. В нашей стране системный подход к вопросам безопасности НЧ с точки зрения их риска для здоровья человека и состояния среды обитания на государственном уровне был начат с постановлений главного государственного санитарного врача Российской Федерации 2007 года [36, 37]. В них была определена концепция организации надзора и проведения токсикологических исследований с наноматериалами. Было подчёркнуто, что вещество в виде НЧ может быть токсичным, тогда как это же вещество в микро-размере или в форме ионов может быть безопасным в схожей концентрации, поэтому методология оценки риска, разработанная не на наночастицах, может быть неприменима для них. Производителям и импортерам товаров с содержанием НЧ было рекомендовано предоставлять потребителям и надзорным органам информацию об оценке безопасности применяемых НЧ для здоровья человека и состояния среды обитания. Обращение с НЧ, как с компонентами пищевых продуктов и загрязнителями среды, стало подпадать под действие законов [38, 39], согласно которым степень опасности НЧ необходимо характеризовать. Были утверждены гигиенические нормативы ГН 1.2.2633-10 [40], которые впервые установили значения допустимых концентраций наноматериалов в воздухе рабочей зоны, в воде водоёмов, а также в питьевой воде. Срок действия последнего документа истёк в 2013 году, поэтому сейчас учитывается только общее содержание опасного вещества в среде, без учёта размеров его частиц [41–43]. Действующими остаются методические рекомендации [8, 9], в которых прописан порядок выполнения исследований токсичности НЧ на клеточных культурах и животных, разработан подход к оценке степени потенциальной опасности наноматериалов на основе метода математического моделирования с построением генеральной определительной таблицы.

За последние 10 лет возросло использование НЧ металлов, особенно диоксида титана (TiO2), в пищевой промышленности и косметике. Более разнообразным стало применение НЧ и в медицине, особенно серебра и золота. Широко и системно стала изучаться проблема проникновения НЧ через различные биологические барьеры, например, через гематоэнцефалический, плацентарный и т.д., что считается одним из наиболее опасных свойств НЧ размером менее 50 нм в диаметре. В обзоре [5] нами была высказана гипотеза, что проникновение НЧ таких размеров через гематоэнцефалический барьер у рабочих, занятых на производстве НЧ, может вызывать со временем развитие неизвестных ранее нозологических форм профзаболеваний, связанных с нарушениями работы мозга. Заметное развитие получают исследования негативного влияния НЧ на потомство.

Цель. Анализ новых появившихся тенденций в области наночастиц и наноматериалов, новых опубликованных данных в 2010–2021 годах по токсичности НЧ, в первую очередь серебра, золота и TiO2.

Указанные вещества взяты за основу в обзоре в связи с тем, что в виде макрочастиц они являются нетоксичными, поэтому сегодня часто рассматриваются в качестве перспективного материала для НЧ, использующихся в медицине, быту, косметологии. Тем не менее в наноразмерном состоянии, как показано в обзоре, эти материалы проявляют токсичность.

Для каждого из разделов обзора поиск источников был проведён через систему Google Академия. Всего в обзор вошли 205 источников: 111 ссылок — в первую часть, 75 — во вторую, и 56 — в третью. Основной объём информационной базы составили статьи, опубликованные в 2011–2021 годах. Приведены необходимые примеры основополагающих и процитированных более 200 раз работ по отдельным направлениям исследований НЧ, опубликованных не ранее 2000 года. Поиск источников осуществлялся в базах данных Elsevier, Springer, Pubmed, E-library, на сайтах издающих журналы научных обществ (например, American Chemical Society).

ОБЛАСТИ ПРИМЕНЕНИЯ НЧ И ПУТИ ПОСТУПЛЕНИЯ В ОРГАНИЗМ

За последние 10 лет НЧ приобрели большую популярность в пищевой промышленности за их способность изменять текстуру, внешний вид и вкус пищи [44, 45]. Кетчуп, майонез, овощные супы в пакетиках, сахарная пудра, специи и соли содержат наночастицы, повышающие текучесть и сыпучесть этих продуктов. В производстве колбасных изделий применяются нанокапсулы, содержащие консерванты, красители и вкусовые добавки. Такие же нанокапсулы, но заполненные витаминами и минеральными веществами, добавляются в хлебобулочные изделия и прохладительные напитки [46, 47]. Наиболее часто используется диоксид титана (TiO2), который является маркированной в ЕС пищевой добавкой E171. Это отбеливающий агент, используемый в широком спектре продуктов, от шоколада и жевательной резинки до хлебобулочных изделий, сухого молока и майонеза [44, 45]. Таким образом, пищевой путь попадания НЧ в организм людей сегодня уже реальность.

Обширно применение наночастиц в косметике, парфюмерии, бытовой химии [5, 48–50], что открыло им возможность проникновения в наш организм и через кожу. В солнцезащитных средствах содержатся минеральные фотопротекторы, такие как НЧ оксида цинка (ZnO) или TiO2, так как они отражают ультрафиолетовое излучение [51–53]. Научный комитет по безопасности потребителей (Scientific Committee on Consumer Safety, SCCS) признал наночастицы TiO2, не раздражающим кожу агентом при отсутствии доказательств его мутагенности, канцерогенности и репродуктивной токсичности, после экспозиции на коже вплоть до содержания его в количестве 25% как основного наносимого средства. Однако в рекомендациях SCCS не учтён ингаляционный путь проникновения НЧ в организм, например, при использовании спреев или пудр [53]. Для повышения эффективности проникновения активного вещества в нижние слои эпидермиса производители косметики заключают вещество в наноразмерные липосомы, пузырьки с оболочкой из фосфолипидного бислоя [51, 54]. НЧ серебра как «народный антибактериальный агент» часто добавляют в увлажняющие средства, декоративную косметику, солнцезащитные средства и т.д. [55] Однако из-за слабой растворимости серебра в воде вопрос антибактериальных свойств цельного серебра (не ионов), в том числе и в форме НЧ, остаётся спорным [56]. Введение в моющие средства НЧ серебра улучшило качество гелей, возрос их антибактериальный эффект и усилилась моющая способность [48].

Помимо естественных путей могут встречаться и случаи намеренного введения НЧ, например, в кровоток, что потенциально может быть даже более опасно. Одним из перспективных разрабатываемых методов является диагностика с помощью магнитных НЧ. Это НЧ металлов, имеющие постоянный или наведённый магнитный момент. Ими можно управлять в кровотоке приложением внешнего градиента напряжённости магнитного поля. Такое «действие на расстоянии», объединённое со свойственной магнитному полю проницаемостью в тканях, может обеспечить адресную доставку: магнитные НЧ могут точно доставить капсулу с химиопрепаратом или атомы радионуклида в опухоль [57, 58]. Магнитные НЧ могут быть использованы в различных контрастных агентах для магнитной резонансной томографии (МРТ), могут усилить уничтожение раковых клеток с помощью гипертермии [57, 59]. Наибольший интерес с точки зрения физики магнетизма представляют так называемые тяжёлые редкоземельные металлы: металлы, стоящие в ряду лантаноидов после гадолиния.

НЧ золота имеют повышенное сечение поглощения и рассеяния света, а характер их спектра поглощения зависит от размера и формы НЧ. Например, сферические НЧ золота диаметром 10–25 нм поглощают свет в области 520 нм, а золотые наностержни — в ближнем ИК-диапазоне спектра [60]. Наночастицы золота также могут функционировать в качестве контрастных средств в ряде оптических методов визуализации опухолей [61, 62], в том числе для последующего прицельного лечебного воздействия на маркированную зону, например, для фототермического разрушения опухолевых клеток [61, 63–65].

Другое современное высокотехнологичное направление в медицине — разработка наноразмерных носителей-капсул для целенаправленного транспорта лекарств в орган или ткань-мишень. На их основе разрабатываются технологии контролируемого и пролонгированного высвобождения фармацевтических препаратов [66, 67]. Активно исследуются в качестве носителей различные полимерные НЧ, липосомы, золото, серебро, магнитные НЧ, НЧ оксидов металлов (Fe3O4, TiO2, ZnO, SiO2), фуллерены [68–77]. Например, перспективны для доставки радионуклида рения-188 в опухоли комплексные НЧ, состоящие из кремния, покрытого полиэтиленгликолем (PEG). Такие комплексы содержат нетоксичные компоненты, небольшой размер, циркулируют в кровеносном русле без преимущественного накопления в отдельных органах, хорошее осаждаются в опухолях при высокой выживаемости подопытных животных (72% против 0% в контроле) [78]. Используются и комплексные НЧ с диэлектрическим или магнитным ядром и золотой оболочкой. При этом главное достоинство таких многослойных НЧ заключается в их полифункциональности, реализуемой за счёт разделения функций ядра и оболочки [62].

Один из вариантов нанокапсул для лекарств основан на формировании модифицированных, или функционализированных, НЧ. К поверхности наночастиц присоединяют молекулярные структуры, обладающие необходимыми для медицинских применений функциями и свойствами. Например, применение НЧ золота in vivo часто требует поверхностной функциональности и растворимости в воде, поэтому заряженные или гидрофильные группы, такие как олигоэтиленгликоль (OEG) и PEG, наносят на поверхность НЧ. Благодаря устойчивости OEG и PEG к неспецифическим взаимодействиям с биомакромолекулами становится возможным на поверхность НЧ помещать самые разные вещества, например, флуоресцентные красители, антитела, комплексоны, олигонуклеотиды, пептиды и другие [63, 79]. Однако гидрофильные покрытия типа OEG и PEG могут и сами быть дополнительным токсическим агентом для живых организмов. Однако, по мнению некоторых авторов [80], PEG не обладает ни генотоксичностью, ни острой токсичностью, ни канцерогенностью, ни репродуктивной токсичностью, в том числе при повторных введениях. Иногда в опытах с НЧ, стабилизированными PEG, при прохождении ими биологических барьеров такое токсическое воздействие можно подозревать [81].

НЧ золота размером 10–22 нм можно использовать в качестве носителей для доставки вакцин. Мышам линии, у которой образуются опухоли, сделали инъекцию НЧ золота в дозе 10 мкг/мышь, к поверхности которых был присоединен белок-антиген. У экспериментальных животных размеры опухолей были заметно меньше, чем у контроля [62]. Дендритные клетки накопили в себе золото и запускали активацию Т-клеток.

Еще одним направлением применения НЧ является регенеративная медицина, нацеленная на восстановление повреждённой ткани (органа) с помощью трансплантации клеток (клеточной терапии) или путём активации мультипотентных клеток самого организма. Показано, что НЧ серебра способствуют пролиферации мезенхимальных стволовых клеток и остеогенной дифференцировке in vitro [82]. НЧ серебра, инкапсулированные в коллаген, способствовали формированию костной мозоли в зоне перелома на модели повреждения бедренной кости мыши. Авторы считают, что НЧ серебра могут способствовать образованию костной мозоли как за счёт индукции хемоаттрактантного действия, т.е. привлечения в зону перелома мезенхимальных мультипотентных клеток и фибробластов, так и за счёт индукции пролиферации мезенхимальных мультипотентных клеток и индукции их остеогенной дифференцировки через активацию TGFβ/BMP (костный морфогенетический протеин) [82]. Также было показано, что НЧ золота, используемые как носители антигенов, стимулируют фагоцитирующую активность макрофагов и влияют на функционирование лимфоцитов, что, вероятно, может обуславливать их иммуномодулирующий эффект [83, 84].

Ряд авторов считает, что НЧ серебра (Ag) обладают бактерицидным действием [85, 86]. В частности, есть рассуждения о том, что в водной среде происходит окисление серебра и/или его растворение (диссоциация) до ионов Ag+, вызывающих повышенную генерацию активных форм кислорода [85]. По мнению некоторых авторов [86], ионы Ag+ вызывают дефекты клеточной стенки бактерий, развивается окислительный стресс, что приводит к гибели бактериальной клетки. Соответственно, материалы с покрытием из НЧ серебра широко сегодня пытаются применять для обеззараживания, т.е. это тоже один из массовых путей потребления НЧ. Однако серебро инертно, не окисляется кислородом при обычных условиях, а только серой, и не растворяется в воде, также как его сульфид, поэтому не образует ионов в растворе в сколько-нибудь значимых концентрациях. Кроме того, причина токсического воздействия Ag+ только на бактериальные клетки в организме, не затрагивая собственные здоровые клетки человека, остаётся непонятной. Никак нельзя забывать, что токсичность Ag+ несёт свои собственные риски также для организма человека при медицинском применении подобных препаратов [87].

С другой стороны, применение НЧ серебра и висмута может оказаться полезным при лечении таких заболеваний, как трофические язвы, гнойный остеомиелит, бактериальный вагиноз, ожоги [87–89]. Показано, что цельные НЧ серебра размером от 1 до 10 нм эффективно ингибируют вирус иммунодефицита человека и, таким образом, пригодны для лечения ВИЧ [90]. Однако нельзя забывать, что токсичность Ag+ несет свои собственные риски для человека и при медицинском применении подобных препаратов [87].

НЧ золота, серебра, платины, гадолиния применяются в медицине, в том числе в качестве сенсибилизаторов при радиотерапии опухолей. Предполагаемый механизм сенсибилизации заключается в окислительном стрессе, генерируемом клеткой в ответ на присутствие НЧ [91]. Например, комплексные НЧ, состоящие из серебра в форме призм, на которые точечно нанесен графен, а снаружи вся конструкция покрыта PEG, хорошо проникали в раковые клетки толстой кишки in vitro и оказывали значительный радиосенсибилизирующий эффект. После разового внутривенного введения НЧ в дозе 56 мкг/особь с последующим разовым облучением дозой 10 Грей у мышей значительно замедлился рост опухолей и возросло время жизни [92]. В последние годы интерес вызвал фотокатализируемый эффект уничтожения раковых клеток НЧ TiO2. Клетки аденокарциномы молочной железы (MDA-MB-468) человека подвергались воздействию ультрафиолетового (УФ) света диапазона A (длина волны 350 нм) в течение 20 минут в присутствии водных дисперсий TiO2 в двух формах — анатаза и в смеси анатаза с рутилом. Оказалось, что НЧ чистого анатаза TiO обладают лучшим цитотоксическим эффектом по сравнению со смесями анатаз-рутил сходного размера. Молекулярный механизм цитотоксичности наночастиц TiO2 включает повышенную экспрессию гена про-апоптического белка BAX и инактивацию полиаденозиндифосфатной рибозы, опосредованную регуляторными белками каспазами 3 и 9, что приводит к фрагментации ДНК и апоптозу клеток [93, 94].

Расширение применений наноматериалов в быту, в медицине, в пищевой промышленности приводит к увеличению их производства. Все больше работников на производстве сталкиваются на своих рабочих местах с НЧ, причём их контакт с НЧ может быть как острым, разовым, в больших дозах, так и хроническим, в малых дозах, но ежедневным, длительным по времени (годы, десятилетия). Здесь существенным путём поступления НЧ в организм, помимо пищевого, становится ингаляционный, т.е. вдыхание взвеси НЧ [95, 96]. Это ставит дополнительные задачи для профпатологии по изучению опасности НЧ в плане развития профзаболеваний и по определению предельно допустимых концентраций НЧ в рабочей зоне [5, 97]. Особенно опасным в свете последних данных по проникновению НЧ через плаценту [23, 30] может быть контакт беременных женщин на производстве с НЧ, начиная с самых первых недель беременности, когда работница может еще о ней даже и не знать.

Одновременно с увеличением производства НЧ растёт и их проникновение в окружающую среду, в том числе в качестве бытовых и производственных отходов и выбросов промышленных предприятий [7]. Медленно разлагаемые и неразлагаемые НЧ (золото, титан, серебро и др.) попадают в воду и почву, накапливаются в них, попадают пищевым путем в животных, которых, в свою очередь, употребляет в пищу человек. В крупных городах и промышленных центрах проблемой становится загрязнение воздуха. С выбросами промышленных предприятий взвеси НЧ в большом количестве попадают и в атмосферу [95, 98]. Топливо для автомобилей с добавками НЧ обеспечивает существенное загрязнение воздуха НЧ, особенно в городах [99]. Таким образом, количество НЧ, с которыми люди постоянно сегодня сталкиваются, неуклонно возрастает. Избежать контакта с НЧ в современном мире, видимо, уже невозможно. Всё это делает проблему изучения токсичности НЧ крайне актуальной.

ОСНОВНЫЕ НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ ТОКСИЧНОСТИ НЧ

Промышленная нанотоксикология

Тесно связано с токсичностью НЧ в окружающей среде рассмотрение опасности НЧ для работников промышленности (occupational nanotoxicology). Данное направление в основном представляет собой две области исследований. Во-первых, это сравнительный анализ биохимических маркёров, которые указывают на нарушения в работе тех или иных органов и их систем у контактирующих с определенным типом НЧ (или несколькими типами) работников предприятий [100]. Во-вторых, это описание случаев заболеваний (case study) у рабочих, вызванных НЧ или не поддающихся объяснению другими факторами [101, 102]. В 2009 году опубликована статья [102] о случаях заболеваний рабочих, вызванных НЧ. Ранее были описаны примеры развития воспаления и фиброза в лёгких у рабочих угольных шахт после нескольких лет контакта с угольной пылью, в том числе содержащей мелкодисперсный кремний [103, 104]. В подавляющем большинстве исследований в крови контактирующих с НЧ рабочих выявляется значительное увеличение содержания целого ряда маркёров воспаления [100]. Отмечены случаи аргирии у ювелиров после экспозиции содержащими серебро аэрозолями на производстве, а также острой интоксикации после вдыхания серебросодержащих паров [105, 106]. Основной трудностью при оценке нарушений здоровья работников при контакте с НЧ остаётся выявление степени и характера влияния именно НЧ. Например, тяжёлые металлы индуцируют недомогания, которые проявляются в форме затруднений дыхания, ослабления мускульного тонуса, нарушений мелкой моторики и приводят к ухудшению памяти и снижению внимания [107–110]. Действует ли сам металл или его наноразмерная форма — пока сказать сложно. Дело в том, что чётко контролируемый эксперимент с НЧ и рабочими в условиях реальных производств поставить проблематично.

В лабораторных условиях моделируют контакт рабочих с НЧ либо ингаляционным путём [95, 96], либо через питьевую воду [26, 29]. Последствия ингаляционного воздействия НЧ применительно к вопросу о риске возникновения профессиональных заболеваний у работников производств или аналогичных заболеваний у проживающего рядом с промзонами населения, часто изучают на мелких лабораторных грызунах. Животных помещают на заданное исследователем время в стеклянную трубу, подключенную к ингаляционной системе, через которую в трубу подаётся воздух с заранее измеренным (например, гравиметрическим анализом) содержанием НЧ [95]. НЧ серебра обнаруживаются в ядре и везикулах клеток легочного эпителия и в макрофагах. Постепенно НЧ образуют комплексы с тиол-содержащими молекулами, предположительно металлотионеинами, связывающими тяжёлые металлы низкомолекулярными белками [96]. Спустя сутки после экспозиции НЧ в сотни раз по сравнению с таковым у интактных животных возрастает количество нейтрофилов в лёгких, в 5 раз увеличивается содержание про-воспалительных цитокинов и в полтора раза общего глутатиона, выбранного в исследовании в качестве маркёра окислительного стресса [95]. Выраженность эффектов возрастает с увеличением концентрации НЧ в воздухе и при применении общей площади поверхности НЧ в качестве меры полученной животным альвеолярной дозы [111]. Также было показано ухудшение когнитивных функций у животных при длительном вдыхании богатого наночастицами дизельного выхлопа [99]. Надо отметить, что сегодня исследований с дозированным ингаляционным контактом с НЧ существенно меньше, чем с контактом через пищу или с применением разовой инъекции. Это связано, видимо, со сложностью контроля и поддержания нужной концентрации НЧ в воздушной смеси во время эксперимента.

При моделировании воздействий в промышленной токсикологии, учитывая, что одной из главных её целей является разработка адекватных мер защиты и профилактики здоровья работников, контактирующих с наночастицами, может возникнуть вопрос о биологических моделях, наиболее близких к организму человека. Если речь идёт о культурах клеток, то здесь вопрос решается достаточно просто, т.к. возможна работа с культурами клеток человека. Если же речь идёт о целом организме, особенно о влиянии НЧ на функционирование нервной системы, головного мозга, то большинство исследований сегодня проводится на мелких грызунах (мыши, крысы), не на приматах. Из плацентарных млекопитающих, наиболее близких человеку в филогенетическом плане, они обладают рядом ключевых достоинств. Они недороги в содержании и требуют сравнительно мало места на особь, т.е. они доступны финансово, и в одном виварии можно легко содержать несколько сотен животных. Они быстро размножаются (половая зрелость наступает к возрасту 1,5 месяца) и обладают небольшим сроком жизни (1–1,5 года), что удобно для исследований на разных половозрастных группах, в том числе на родителях и потомстве. Особенности нормальной физиологии и поведения мышей и крыс охарактеризованы, есть база данных их генов, на них проводится основная масса исследований фармацевтических препаратов. Значимым достоинством мышиной модели становится стандартизированная база различных типов поведенческих тестов, позволяющих оценивать особенности поведения, что позволяет характеризовать последствия влияния НЧ и проводить сравнение результатов работ разных исследовательских групп. Мышиная модель общепризнана для решения широкого спектра исследовательских задач, в том числе в токсикологии, что даёт ей сегодня весомые преимущества перед обезьянами, свиньями, кошками, собаками, значимо более дорогими и сложными в содержании, сравнительно медленно размножающимися.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ/ADDITIONAL INFO

Вклад авторов. Все авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией). Наибольший вклад распределён следующим образом: Ивлиева А.Л. — сбор и анализ источников литературы, подготовка первого варианта рукописи, редактирование рукописи; Зиньковская И. — подготовка раздела о методах детекции и количественного анализа наночастиц, участие в редактировании рукописи; Петрицкая Е.Н. — разработка дизайна обзора, интерпретация и анализ данных литературы, утверждение переработанного варианта рукописи; Рогаткин Д.А. — концепция обзора, анализ и интерпретация данных, переработка первого варианта рукописи.

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Author contribution. All authors confirm their authorship compliance with the international ICMJE criteria (all authors have made a significant contribution to the development of the concept, research and preparation of the article, read and approved the final version before publication). The greatest contribution is distributed as follows: Ivlieva A.L. — collection and analysis of literature sources, preparation of the first version of the manuscript, editing of the manuscript; Zinkovskaya I. — preparation of a section on methods of detection and quantitative analysis of nanoparticles, participation in editing the manuscript; Petritskaya E.N. — development of the review design, interpretation and analysis of literature data, approval of the revised version manuscripts; Rogatkin D.A. — the concept of review, analysis and interpretation of data, processing of the first version of the manuscript.

Funding source. This study was not supported by any external sources of funding.

Competing interests. The authors declare that they have no competing interests.

×

About the authors

Alexandra L. Ivlieva

Moscow Regional Research and Clinical Institute named after M.F. Vladimirsky

Author for correspondence.
Email: ivlieva@medphyslab.com
SPIN-code: 5555-1343

researcher (Biology)

Russian Federation, Moscow

Inga Zinicovscaia

Joint Institute for Nuclear Research

Email: zinikovskaia@mail.ru
ORCID iD: 0000-0003-0820-887X
SPIN-code: 6814-1720

Dr. Sci. (Chemistry)

Russian Federation, Dubna

Elena N. Petriskaya

Moscow Regional Research and Clinical Institute named after M.F. Vladimirsky

Email: medphys@monikiweb.ru
ORCID iD: 0000-0002-3836-0103
SPIN-code: 2641-3111

PhD (Biology)

Russian Federation, Moscow

Dmitry A. Rogatkin

Moscow Regional Research and Clinical Institute named after M.F. Vladimirsky

Email: d.rogatkin@monikiweb.ru
ORCID iD: 0000-0002-7755-308X
SPIN-code: 9130-8111
http://www.medphyslab.ru

Dr. Sci. (Technic), Associate Professor

Russian Federation, Moscow

References

  1. Krug HF. Nanosafety Research — Are We on the Right Track? Angewandte Chemie International Edition. 2014;53:12304–12319. doi: 10.1002/anie.201403367
  2. Oomen AG, Bos PMG, Fernandes TF, et al. Concern-driven integrated approaches to nanomaterial testing and assessment — report of the NanoSafety Cluster Working Group 10. Nanotoxicology. 2014;8(3):334–348. doi: 10.3109/17435390.2013.802387
  3. Scott-Fordsmand JJ, Pozzi-Mucelli S, Tran L, et al. A unified framework for nanosafety is needed. Nano Today. 2014;9(5):546-549. doi: 10.1016/j.nantod.2014.07.001
  4. Ostrowski AD, Martin T, Conti J, et al. Nanotoxicology: characterizing the scientific literature, 2000–2007. Journal of Nanoparticle Research. 2009;11:251–257. doi: 10.1007/s11051-008-9579-5
  5. Abaeva LF, Shumskii VI, Petritskaya EN, et al. Nanoparticles and nanotechnology today and tomorrow. Al'manakh klinicheskoi meditsiny [Almanac of Clinical Medicine]. 2010;22:10-16.
  6. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007,2:MR17. doi: 10.1116/1.2815690
  7. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management. 2009;29(9):2587-2595. doi: 10.1016/j.wasman.2009.04.001
  8. Metodicheskie rekomendatsii MP 1.2.2522-09 "Metodicheskie rekomendatsii po vyyavleniyu nanomaterialov, predstavlyayushchikh potentsial'nuyu opasnost' dlya zdorov'ya cheloveka" [Guidelines 1.2.2522-09 "Guidelines for the identification of nanomaterials that pose a potential hazard to human health"] [Electronic resource]. URL: https://www.garant.ru/products/ipo/prime/doc/4088803/ (date of the application 22.01.2021).
  9. Metodicheskie rekomendatsii MR 1.2.2566-09 «Otsenka bezopasnosti nanomaterialov in vitro i v model'nykh sistemakh in vivo» [Guidelines 1.2.2566-09 "Guidelines for assessment of the safety of nanomaterials in vitro and in model systems in vivo"] [Electronic resource]. URL: http://www.gostrf.com/normadata/1/4293817/4293817685.pdf (date of the application 22.01.2021).
  10. Aijie Ch, Huimin L, Jia L, et al. Central neurotoxicity induced by the instillation of ZnO and TiO2 nanoparticles through the taste nerve pathway. Nanomedicine (Lond.). 2017;12(20):2453–2470. doi: 10.2217/nnm-2017-0171
  11. Fatemi M, Roodbari NH, Ghaedi K, Naderi G. The effects of prenatal exposure to silver nanoparticles on the developing brain in neonatal rats. Journal of Biological Research-Thessaloniki. 2013;20:233-242.
  12. Garcia-Reyero N, Kennedy AJ, Escalon BL, et al. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environmental Science and Technology. 2014;48:4546–4555. doi: 10.1021/es4042258
  13. Morishita Y, Yoshioka Y, Takimura Y, et al. Distribution of silver nanoparticles to breast milk and their biological effects on breast-fed offspring mice. ACS Nano. 2016;10(9):8180–8191. doi: 10.1021/acsnano.6b01782
  14. Bertrand C, Zalouk-Vergnoux A, Giambérini L, et al. The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana. Environmental Toxicology and Chemistry. 2016;35(10):2550-2561. doi: 10.1002/etc.3428
  15. Hu R, Zheng L, Zhang T, et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. Journal of Hazard Materials. 2011;191:32-40. doi: 10.1016/j.jhazmat.2011.04.027
  16. Krawczynska A, Dziendzikowska K, Gromadzka-Ostrowska J, et al. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renine-angiotensin system in brain. Food and Chemical Toxicology. 2015;85:96-105. doi: 10.1016/j.fct.2015.08.005
  17. Massarsky A, Dupuis L, Taylor J, et al. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere. 2013;92:59–66. doi: 10.1016/j.chemosphere.2013.02.060
  18. Zhou Y, Hong F, Tian Y, et al. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicology Research. 2017;6(6):889-901. doi: 10.1039/c7tx00153c
  19. Zhou Y, Ji J, Chen Ch, Hong F. Retardation of axonal and dendritic outgrowth is associated with the MAPK signaling pathway in offspring mice following maternal exposure to nanosized titanium dioxide. Journal of Agricultural and Food Chemistry. 2019;67:2709−2715. doi: 10.1021/acs.jafc.8b06992
  20. Dănilă OO, Berghian AS, Dionisie V, et al. The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring Wistar rats. Nanomedicine (Lond). 2017;12(12):1455-1473. doi: 10.2217/nnm-2017-0029
  21. Grissa I, ElGhoul J, Mrimi R, et al. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain Research Bulletin. 2019;155:119-128. doi: 10.1016/j.brainresbull.2019.10.005
  22. Cui Y, Chen X, Zhou Z, et al.. Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. Chemosphere. 2014;96:99-104. doi: 10.1016/j.chemosphere.2013.07.051
  23. Bideskan AE, Mohammadipour A, Fazel A, et al. Exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis. Experimental and Toxicologic Pathology. 2017;69(6):329-337. doi: 10.1016/j.etp.2017.02.006
  24. Xin L, Wang J, Wu Y, et al. Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles. Human & Experimental Toxicology. 2015;34(3):315-323. doi: 10.1177/0960327114538988
  25. Krivova NA, Khodanovich MYu, Zamoshchina TA, et al. Influence of titanium dioxide on some functions of the central nervous system of rats. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya [Bulletin of the Tomsk State University. Biology]. 2011;2(14):96–109.
  26. Antsiferova A, Kopaeva M, Kashkarov P. Effects of prolonged silver nanoparticle exposure on the contextual cognition and behavior of mammals. Materials. 2018;11:558. doi: 10.3390/ma11040558
  27. Ben Younes NR, Amara S, Mrad I, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environmental Science and Pollution Research. 2015;22:8728–8737. doi: 10.1007/s11356-014-4002-5
  28. Tabatabaei SRF, Moshrefi M, Askaripour M. Prenatal exposure to silver nanoparticles causes depression like responses in mice. Indian Journal of Pharmaceutical Sciences. 2015;77(6):681–686.
  29. Ivlieva AL, Petritskaya EN, Lopatina MV. Predvaritel'nye dannye o vliyanii nanochastits na kognitivnye sposobnosti molodykh zhivotnykh [Preliminary data on the effect of nanoparticles on the cognitive abilities of young animals]. Kognitivnoe modelirovanie: Trudy Shestogo Mezhdunarodnogo foruma po kognitivnomu modelirovaniyu [Cognitive Modeling: Proceedings of the Sixth International Forum on Cognitive Modeling]. Rostov-on-Don, Science and Education Foundation, 2018;2:280-285.
  30. Ghaderi Sh, Tabatabaei S, Varzi H, Rashno M. Induced adverse effects of prenatal exposure to silver nanoparticles on neurobehavioral development of offspring of mice. J. Toxicol. Sci. 2015;40(2):263-275. doi: 10.2131/jts.40.263
  31. Hritcu L, Stefan M, Ursu L, et al. Exposure to silver nanoparticles induces oxidative stress and memory deficit in laboratory rats. Central European Journal of Biology. 2011;6:497–509. doi: 10.2478/s11535-011-0022-z
  32. Mohammadipour A, Fazel A, Haghir H, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environmental Toxicology and Pharmacology. 2014;37:617-625. doi: 10.1016/j.etap.2014.01.014
  33. Greish K, Alqahtani AA, Alotaibi AF, et al. The Effect of Silver Nanoparticles on Learning, Memory and Social Interaction in BALB/C Mice. International Journal of Environmental Research and Public Health. 2019;16(1):148. doi: 10.3390/ijerph16010148
  34. Nano-Safety: What We Need to Know to Protect Workers. Fazarro D.E. (Ed.), Trybula W. (Ed.), Tate J. (Ed.), Hanks C. (Ed.). Berlin: De Gruyter, 2017;215p.
  35. Shandilya N, Marcoulaki E, Vercauteren S, et al. Blueprint for the Development and Sustainability of National Nanosafety Centers. Nanoethics. 2020;14:169–183. doi: 10.1007/s11569-020-00364-6
  36. Postanovlenie glavnogo gosudarstvennogo sanitarnogo vracha RF ot 31 oktyabrya 2007 g. N79 «Kontseptsiya toksikologicheskikh issledovanii, metodologii otsenki riska, metodov identifikatsii i kolichestvennogo opredeleniya nanomaterialov» [Resolution of the Chief State Sanitary Doctor of the Russian Federation of October 31, 2007 No. 79 "Concept of toxicological studies, risk assessment methodology, methods of identification and quantitative determination of nanomaterials"] [Electronic resource]. Rossiiskaya gazeta [Russian gazette]. URL: https://rg.ru/2007/12/01/koncepciya-doc (date of the application 22.01.2021).
  37. Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha Rossiiskoi Federatsii ot 23 iyulya 2007 g. N 54 «O nadzore za produktsiei, poluchennoi s ispol'zovaniem nanotekhnologii i soderzhashchei nanomaterialy» [Resolution of the Chief State Sanitary Doctor of the Russian Federation of July 23, 2007 No. 54 "On the supervision of products obtained using nanotechnology and containing nanomaterials"] [Electronic resource]. URL: https://www.garant.ru/products/ipo/prime/doc/70278972/ (date of the application 22.01.2021).
  38. Federal'nyi zakon ot 30.03.1999 g. N 52-FZ «O sanitarno-epidemiologicheskom blagopoluchii naseleniya» [Federal Law of March 30, 1999 No. 52-FZ "On the Sanitary and Epidemiological Well-Being of the Population"] [Electronic resource]. URL: http://www.kremlin.ru/acts/bank/13636 (date of the application 22.01.2021).
  39. Federal'nyi zakon ot 02.01.2000 g. N 29-FZ «O kachestve i bezopasnosti pishchevykh produktov» [Federal Law dated 02.01.2000 No. 29-FZ "On the quality and safety of food products"] [Electronic resource]. URL: http://www.kremlin.ru/acts/bank/14882 (date of the application 22.01.2021).
  40. GN 1.2.2633-10 «Gigienicheskie normativy soderzhaniya prioritetnykh nanomaterialov v ob"ektakh okruzhayushchei sredy» [Hygienic standards 1.2.2633-10 “Hygienic standards for the content of priority nanomaterials in environmental objects”] [Electronic resource]. URL: https://meganorm.ru/Index2/1/4293819/4293819425.htm (date of the application 22.01.2021).
  41. GN 2.1.6.1338-03 «Predel'no dopustimye kontsentratsii (PDK) zagryaznyayushchikh veshchestv v atmosfernom vozdukhe naselennykh mest» [Hygienic standards 2.1.6.1338-03 “Maximum permissible concentrations (MPC) of pollutants in the ambient air of populated areas”] [Electronic resource]. URL: http://www.dioxin.ru/doc/gn2.1.6.1338-03.htm (date of the application 22.01.2021).
  42. GN 2.1.5.1315-03 «Predel'no dopustimye kontsentratsii (PDK) khimicheskikh veshchestv v vode vodnykh ob"ektov khozyaistvenno-pit'evogo i kul'turno-bytovogo vodopol'zovaniya» [Hygienic standards 2.1.5.1315-03 “Maximum permissible concentrations (MPC) of chemical substances in the water of water bodies for household and drinking and cultural and household water use”] [Electronic resource]. URL: http://www.dioxin.ru/doc/gn2.1.5.1315-03.htm (date of the application 22.01.2021).
  43. GN 2.2.5.3532-18 «Predel'no dopustimye kontsentratsii (PDK) vrednykh veshchestv v vozdukhe rabochei zony» [Hygienic standards 2.2.5.3532-18 “Maximum permissible concentration (MPC) of harmful substances in the air of the working area”] [Electronic resource]. URL: https://files.stroyinf.ru/Data2/1/4293737/4293737770.pdf (date of the application 22.01.2021).
  44. Jones CF, Grainger DW. In vitro assessments of nanomaterial toxicity. Advanced Drug Delivery Reviews. 2009;61(6):438-456. doi: 10.1016/j.addr.2009.03.005
  45. Kunhikrishnan A, Shon HK, Bolan NS, et al. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Critical Reviews in Environmental Science and Technology. 2015;45(4):277-318. doi: 10.1080/10643389.2013.852407
  46. Okara AI. Nanotechnology in food production: the state of the regulatory framework and safety problems. Vestnik Khabarovskoi gosudarstvennoi akademii ekonomiki i prava [Bulletin of the Khabarovsk State Academy of Economics and Law]. 2011;1(52):79-84.
  47. Frolov DI. Extrudates from vegetable raw materials with a high content of lipids and dietary fiber. Tekhnika i tekhnologiya pishchevykh proizvodstv [Technics and technology of food production]. 2016;42(3):104-110.
  48. Van EYu, Barashkova VI. Issledovanie kolloidno-khimicheskikh kharakteristik kosmeticheskikh emul'sii, stabilizirovannykh PAV, na osnove proizvodnykh nefti i nanochastits serebra [Investigation of the colloidal-chemical characteristics of cosmetic emulsions stabilized by surfactants based on oil derivatives and silver nanoparticles]. Materialy IV Vserossiiskoi konferentsii «Khimiya i khimicheskaya tekhnologiya: dostizheniya i perspektivy» [Materials of the IV All-Russian Conference "Chemistry and Chemical Technology: Achievements and Prospects"]. Kemerovo, Kuzbass State Technical University named after T.F. Gorbachev Publ., 2018;206.1-206.3.
  49. Bilal M, Mehmood S, Iqbal H. The beast of beauty: environmental and health concerns of toxic components in cosmetics. Cosmetics. 2020;7(1):13. doi: 10.3390/cosmetics7010013
  50. Lorenz Ch, Von Goetz N, Scheringer M, et al. Potential exposure of German consumers to engineered nanoparticles in cosmetics and personal care products. Nanotoxicology. 2011;5(1):12-29. doi: 10.3109/17435390.2010.484554
  51. Kornilov KN, Viktorova YuV, Zaikina ES. Obnaruzhenie nanochastits titana i salitsilovoi kisloty v komponentakh dlya kosmeticheskikh kremov metodom lazernogo dinamicheskogo svetorasseivaniya [Detection of titanium and salicylic acid nanoparticles in components for cosmetic creams by laser dynamic light scattering]. Dostizheniya vuzovskoi nauki: sbornik statei XI Mezhdunarodnogo nauchno-issledovatel'skogo konkursa [Achievements of university science: digest of papers of the XI International research competition.]. Penza, International Center for Scientific Cooperation “Science and Education” 2019;1:24-27.
  52. Sokolova OS. Titanium dioxide nanoparticles in various crystalline forms in the composition of sunscreens. Toksikologicheskii vestnik [Toxicological Bulletin]. 2012;3(114):38-42.
  53. Dréno B, Alexis A, Chuberre B. Safety of titanium dioxide nanoparticles in cosmetics. Journal of The European Academy of Dermatology and Venereology. 2019;33:34-46. doi: 10.1111/jdv.15943
  54. Sorinskaya EA, Kornilov KN. Obnaruzhenie liposom v komponentakh dlya kosmeticheskikh kremov metodom lazernogo dinamicheskogo svetorasseivaniya [Detection of liposomes in components for cosmetic creams by laser dynamic light scattering]. Luchshaya nauchno-issledovatel'skaya rabota 2019: sbornik statei XIX Mezhdunarodnogo nauchno-issledovatel'skogo konkursa [Best research paper 2019: collection of articles of the XIX International Research Competition]. Penza, International Center for Scientific Cooperation “Science and Education”, 2019;21-25.
  55. Gajbhiye S, Sakharwade S. Silver Nanoparticles in Cosmetics. Journal of Cosmetics. 2016;6:24-45. doi: 10.4236/jcdsa.2016.61007
  56. Petritskaya EN, Rogatkin DA, Rusanova EV. Comparative characteristics of the antibacterial action of silver and nanosilver preparations in vitro. Al'manakh klinicheskoi meditsiny [Almanac of Clinical Medicine]. 2016;44(2):221-226.
  57. Nikiforov VN, Brusentsov NA. Magnetic hyperthermia in oncology. Meditsinskaya fizika [Medical Physics]. 2007;2(34):51-59.
  58. Usov NA, Liubimov BY. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. Journal of Applied Physics. 2012;112:023901. doi: 10.1063/1.4737126
  59. Gudoshnikov SA, Liubimov BYa. Hysteresis losses in a dense superparamagnetic nanoparticle assembly. Journal of Applied Physics. 2012; 112(2):012143. doi: 10.1063/1.3688084
  60. Kurapov YA, Litvin SЕ, Belyavina NN. Synthesis of pure (ligandless) titanium nanoparticles by EB-PVD method. Journal of Nanoparticle Research. 2021;23(23):20. doi: 10.1007/s11051-020-05110-3
  61. Zagainova EV, Shirmanova MV, Kamenskii VA. Investigation of contrasting properties of gold nanoparticles for the OCT method. Rossiiskie nanotekhnologii [Russian nanotechnologies]. 2007;2(7-8):135-143.
  62. Kang F, Qu X, Alvarez PJJ. Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces. Environmental Science & Technology. 2017;51(5):2776–2785. doi: 10.1021/acs.est.6b05930
  63. Sukhorukov G, Fery B. Möhwald H. Intelligent micro- and nanocapsules. Progress in Polymer Science. 2005;30(8-9):885-897. doi: 10.1016/j.progpolymsci.2005.06.008
  64. Xia Y, Zhou Y, Tang Z. Chiral inorganic nanoparticles: origin, optical properties and bioapplications. Nanoscale. 2011;3:1374-1382. doi: 10.1039/C0NR00903B
  65. Zharov VP, Galitovskaya El, Johnson NC. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers in Surgery and Medicine. 2005;37:219–226. DOI: doi.org/10.1002/lsm.20223
  66. Dykman LA. Gold nanoparticles in biology and medicine: recent achievements and prospects. Acta Naturae. 2011;2(9):36-58.
  67. Martynova EU, Kozlov EN. Nanoparticles: prospects for use in medicine and veterinary medicine. Uspekhi sovremennoi biologii [Advances in modern biology]. 2012;5:435-447.
  68. Escudero D. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles. Accounts of Chemical Research. 2016;49(9):1816–1824. doi: 10.1021/acs.accounts.6b00299
  69. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorganic & Medicinal Chemistry. 2009;17(8):2950-2962. doi: 10.1016/j.bmc.2009.02.043
  70. Generalova AN, Oleinikov VA, Sukhanova A. Quantum dot-containing polymer particles with thermosensitive fluorescence. Biosensors and Bioelectronics. 2013;39(1):187-193. doi: 10.1016/j.bios.2012.07.030
  71. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews. 2008;60(15):1638-1649. doi: 10.1016/j.addr.2008.08.002
  72. Navarro G, Pan J, Torchilin V. Micelle-like Nanoparticles as Carriers for DNA and siRNA. Molecular Pharmaceutics. 2015;12(2):301-313. doi: 10.1021/mp5007213
  73. Parveen S, Hamid A. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis. 2018;115:287-292. doi: 10.1016/j.micpath.2017.12.068
  74. Patsula V, Moskvin M, Dutz S, Horák D. Size-dependent magnetic properties of iron oxide nanoparticles. Journal of Physics and Chemistry of Solids. 2016;88:24-30. doi: 10.1016/j.jpcs.2015.09.008
  75. Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano today. 2010;5(3):213-230. doi: 10.1016/j.nantod.2010.05.003
  76. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics. 2017;42 (12):742–755.
  77. Zhang J, Terrones M, Park R. Carbon science in 2016: Status, challenges and perspectives. Carbon. 2016;98:708-732. doi: 10.1016/j.carbon.2015.11.060
  78. Petriev VM, Tischenko VK, Mikhailovskaya AA, et al. Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188Re radionuclide for cancer therapy. Scientific Reports. 2017;9:2017. doi: 10.1038/s41598-018-38474-7
  79. Marchenkov NS, Marchenko NV. Gold nanoparticles and their application for theranostics of human diseases. Meditsinskaya fizika [Medical Physics]. 2014;4(64):64-77.
  80. Food Safety Commission of JAPAN. 2014. Polyvinylpyrrolidone: Summary. Food Safety. 2014;2(1);12–13. doi: 10.14252/foodsafetyfscj.2014012s
  81. Zin'kovskaya I, Ivlieva AL, Petritskaya EN, Rogatkin DA. Surprising effect of long-term oral administration of silver nanoparticles on fertility in mice. Ekologiya cheloveka [Human Ecology]. 2020;10:23-30. doi: 10.33396/1728-0869-2020-10-23-30
  82. Zhang R, Lee P, Lui VCH, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(8):1949-1959. doi: 10.1016/j.nano.2015.07.016
  83. Сoradeghini R, César S, García P. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicology Letters. 2013;217(3):3205-216. doi: 10.1016/j.toxlet.2012.11.022
  84. Staroverov SA, Aksinenko NM, Gabalov KP. Effect of gold nanoparticles on the respiratory activity of peritoneal macrophages. Gold Bulletin. 2009;42:153–156. doi: 10.1007/BF03214925
  85. Behra R, Sigg L, Clift MJD, et al. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of the Royal Society Interface. 2013;10:20130396. doi: 10.1098/rsif.2013.0396
  86. Holla G, Yeluri R, Munshi AK. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano-silver base inorganic anti-microbial agent (Novaron®) against Streptococcus mutans. Contemporary Clinical Dentistry. 2012;3(3):288-293. doi: 10.4103/0976-237X.103620
  87. Mei N, Zhang Y, Chen Y, et al. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environmental and Molecular Mutagenesis. 2012;53(6):409-419. doi: 10.1002/em.21698
  88. Pierzchala K, Lekka M, Magrez A, et al. Photocatalytic and phototoxic properties of TiO2-based nanofilaments: ESR and AFM assays. Nanotoxicology. 2012;6(8):813-824. doi: 10.3109/17435390.2011.625129
  89. Wu Q, Guo D, Du Y, et al. UVB irradiation enhances TiO2 nanoparticle-induced disruption of calcium homeostasis in human lens epithelial cells. Photochemistry and Photobiology. 2014;90(6):1324-1331. doi: 10.1111/php.12322
  90. Gliga AR, Skoglund S, Wallinder IO, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology. 2014;11(1):11. doi: 10.1186/1743-8977-11-11
  91. Schuemann J, Bagley AF, Berbeco R, et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys. Med. Biol. 2020;65:21RM02. doi: 10.1088/1361-6560/ab9159
  92. Habiba H, Aziz K, Sanders K, et al.. Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers. Scientific Reports. 2019;9:17120. DOI: /s41598-019-53706-0
  93. Lagopati N, Tsilibary E, Falaras P. Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells. International Journal of Nanomedicine. 2014;9:3219–3230. doi: 10.2147/IJN.S62972
  94. Sha B, Gao W, Han Y, et al. Potential application of titanium dioxide nanoparticles in the prevention of osteosarcoma and chondrosarcoma recurrence. Journal of Nanoscience and Nanotechnology. 2013;13(2):1208-1211. doi: 10.1166/jnn.2013.6081
  95. Braakhuis HM, Gosens I, Krystek P, et al. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Particle and Fibre Toxicology. 2014;11:49. doi: 10.1186/s12989-014-0049-1
  96. Smulders S, Larue C, Sarret G, et al. Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicology Letters. 2015;238:1–6. doi: 10.1016/j.toxlet.2015.07.001
  97. Izmerov NF, Tkach AV, Ivanova LA. Nanotechnology and nanoparticles — the state of the problem and tasks of occupational medicine. Meditsina truda i promyshlennaya ekologiya [Occupational medicine and industrial ecology]. 2007;8:1-5.
  98. Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research. 2005;7:587–614. doi: 10.1007/s11051-005-6770-9
  99. Win-Shwe Tin-Tin, Yamamoto Sh, Fujitani Y, et al. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology. 2012;6(5):543-553. doi: 10.3109/17435390.2011.590904
  100. Ghafari J, Moghadasi N, Omari Shekaftik S. Oxidative stress induced by occupational exposure to nanomaterials: a systematic review. Industrial Health. 2020;58:492–502. doi: 10.2486/indhealth.2020-0073
  101. Journeay WS, Goldman RH. Occupational Handling of Nickel Nanoparticles: A Case Report. American journal of industrial medicine. 2014;57(9):1073-1076. doi: 10.1002/ajim.22344
  102. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. European Respiratory Journal. 2009;34:559-567. doi: 10.1183/09031936.00178308
  103. Castranova V, Vallyathan V. Silicosis and Coal Workers' Pneumoconiosis. Environmental health perspectives. 2000;108(4):675-684. doi: 10.1289/ehp.00108s4675
  104. Kuempel ED, Attfield MD, Vallyathan V, et al. Pulmonary inflammation and crystalline silica in respirable coal mine dust: dose-response. Journal of biosciences. 2003;28:61–69. doi: 10.1007/BF02970133
  105. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regulatory Toxicology and Pharmacology. 2018;98:257-267. doi: 10.1016/j.yrtph.2018.08.007
  106. Hadrup N, Sharma AK, Loeschner K, Jacobsen NR. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regulatory Toxicology and Pharmacology. 2020;115:104690. doi: 10.1016/j.yrtph.2020.104690
  107. Teplaya GA. Heavy metals as a factor of environmental pollution (literature review). Astrakhanskii vestnik ekologicheskogo obrazovaniya [Astrakhan bulletin of ecological education]. 2013;1:182-192.
  108. Park RM, Berg ShL. Manganese and neurobehavioral impairment. A preliminary risk assessment. NeuroToxicology. 2018;64:159–165. doi: 10.1016/j.neuro.2017.08.003
  109. Peres TV, Schettinger MRC, Chen P, et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacology and Toxicology. 2016;17:57. doi: 10.1186/s40360-016-0099-0
  110. Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology. 2017;392:47–54. doi: 10.1016/j.tox.2017.10.006
  111. Braakhuis HM, Cassee FR, Fokkens PHB, et al. Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology. 2016;10(1):63-73. doi: 10.3109/17435390.2015.1012184

Copyright (c) 2022 Ivlieva A.L., Zinicovscaia I., Petriskaya E.N., Rogatkin D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies